• العربية
    • English
  • English 
    • العربية
    • English
  • Login
Home
Publisher PoliciesTerms of InterestHelp Videos
Submit Thesis
IntroductionIUGSpace Policies
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Faculty of Engineering
  • Staff Publications- Faculty of Engineering
  • View Item
  •   Home
  • Faculty of Engineering
  • Staff Publications- Faculty of Engineering
  • View Item

Please use this identifier to cite or link to this item:

http://hdl.handle.net/20.500.12358/29053
TitleMechanical and durability properties of high-performance mortar containing binary mixes of cenosphere and waste glass powder under different curing regimes
Title in ArabicMechanical and durability properties of high-performance mortar containing binary mixes of cenosphere and waste glass powder under different curing regimes
Abstract

The construction industry is rapidly expanding due to urbanization and the growing economy. The consumption of Ordinary Portland Cement (OPC) has enormously increased due to massive concrete demand. The rapidly growing demand for concrete production has increased environmental pollution immensely, and cement solely accounts for 8% of the world's carbon dioxide (CO2) emissions. So, it is a dare need of this era to use supplementary cementitious materials (SCMs) which are less carbon dioxide emitters in replacement of cement to reduce the environmental impact and to promote sustainable construction. In this respect, this study is based on the applicability of cenosphere (CS) and waste glass powder (WGP) communally as a cement replacement of 0%–20% with an increment level of 5% to prepare high-performance mortars. The combined effect of CS-WGP in the high-performance mortar is examined at two curing conditions (water and dry) and curing temperatures (20 °C and 80 °C). Several tests are conducted such as workability/fluidity, water absorption, compressive strength, acid attack, flexural strength, fire resistance, packing density, and drying shrinkage to evaluate the rheological, mechanical, and durability properties of CS-WGP based mortars. Results indicated that water curing at elevated temperature (80 °C) is efficient than other curing conditions and temperatures. Moreover, it is also found that the applicability of CS has increased the rheological, mechanical, and durability properties. It is concluded that a 10% replacement of CS and WGP showed appreciable results against all mentioned properties.

Authors
Salim, Muhammad Usama
Mosaberpanah, Mohammad Ali
TypeJournal Article
Date2021-07
LanguageEnglish
Subjects
Environmental pollution
Waste glass powder and cenosphere
High-performance mortar
Sustainable construction
Rheological
Mechanical
Durability properties
Published inJournal of Materials Research and Technology
SeriesVol. 13
PublisherElsevier BV
Citation
Item linkItem Link
DOI10.1016/j.jmrt.2021.04.077
ISSN22387854
License
Collections
  • Staff Publications- Faculty of Engineering [1035]
Files in this item
1-s2.0-S223878542100421X-main.pdf3.414Mb
Thumbnail

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback
 

 

Browse

All of IUGSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsSupervisors

My Account

LoginRegister

Statistics

View Usage Statistics

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback