• العربية
    • English
  • English 
    • العربية
    • English
  • Login
Home
Publisher PoliciesTerms of InterestHelp Videos
Submit Thesis
IntroductionIUGSpace Policies
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Faculty of Engineering
  • Staff Publications- Faculty of Engineering
  • View Item
  •   Home
  • Faculty of Engineering
  • Staff Publications- Faculty of Engineering
  • View Item

Please use this identifier to cite or link to this item:

http://hdl.handle.net/20.500.12358/24576
TitlePotential Contribution of Waste-to-Energy to Power Consumption in the Gaza Strip
Untitled
Abstract

Sustainable energy supply is one of the main challenges that people will face over the coming decades. Biomass can make a substantial contribution to supplying future energy demand in a sustainable way. Currently it is the largest global contributor of renewable energy, and has significant potential to expand the production of heat, electricity and fuels for transport. Municipal solid waste is an enormous renewable resource that has high energy capacity because it contains a high proportion of biomass materials. This kind of sustainable waste management typically called waste-to-energy is critical for reducing the reliance on fossil fuels and non-renewable materials. Waste-to-energy is a reliable and alternative form of energy that has become the basis for many of the most successful solid waste management systems in many countries. Energy recovery from waste is the conversion of waste materials into useable heat, electricity, or fuel through a variety of processes. This study assesses the potential contribution of waste-to-energy facilities to total Gaza peak power demand up to the year 2040 based on three scenarios: incineration, anaerobic digestion and landfill gas recovery. Three dumping sites are distributed along the Gaza Strip, Johr El-deek, Deir El-balah and Rafah. The analysis shows a potential to produce about 1100 MWh per day based on the anaerobic digestion scenario, about 580 MWh per day based on incineration of municipal solid waste scenario, and about 130 MWh per day based on landfill gas recovery scenario. These values accounts to 275%, 145% and 33% of the year 2014 peak electricity demand of 400 megawatt from the three scenarios, respectively. The forecasted results of the three scenarios can be used to design future waste-to-energy facilities in the main cities of the Gaza Strip. The production cost of energy was 7/kWh, 5/kWh and 17/kWhfor incineration, anaerobic digestion and landfill gas recovery scenarios, respectively.

Authors
Abualtayef, Mazen
Elghossain, Reem
Shatat, Mahmoud
TypeJournal Article
Date2015
Subjects
waste-to-energy
cost
municipal solid waste
biomass
Published inInternational Journal of Thermal and Environmental Engineering (IJTEE)
SeriesVolume: 9, Number: 2
PublisherThe International Association for Sharing Knowledge and Sustainability (IASKS)
Citation
Item linkItem Link
License
Collections
  • Staff Publications- Faculty of Engineering [908]
Files in this item
3-2-vol9.pdf477.2Kb
Thumbnail

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback
 

 

Browse

All of IUGSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsSupervisors

My Account

LoginRegister

Statistics

View Usage Statistics

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback