• العربية
    • English
  • English 
    • العربية
    • English
  • Login
Home
Publisher PoliciesTerms of InterestHelp Videos
Submit Thesis
IntroductionIUGSpace Policies
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Faculty of Engineering
  • Staff Publications- Faculty of Engineering
  • View Item
  •   Home
  • Faculty of Engineering
  • Staff Publications- Faculty of Engineering
  • View Item

Please use this identifier to cite or link to this item:

http://hdl.handle.net/20.500.12358/24518
TitleDIMK-means" Distance-based Initialization Method for K-means Clustering Algorithm"
Untitled
Abstract

Partition-based clustering technique is one of several clustering techniques that attempt to directly decompose the dataset into a set of disjoint clusters. K-means algorithm dependence on partition-based clustering technique is popular and widely used and applied to a variety of domains. K-means clustering results are extremely sensitive to the initial centroid; this is one of the major drawbacks of k-means algorithm. Due to such sensitivity; several different initialization approaches were proposed for the K-means algorithm in the last decades. This paper proposes a selection method for initial cluster centroid in K-means clustering instead of the random selection method. Research provides a detailed performance assessment of the proposed initialization method over many datasets with different dimensions, numbers of observations, groups and clustering complexities. Ability to identify the true clusters is the performance evaluation standard in this research. The experimental results show that the proposed initialization method is more effective and converges to more accurate clustering results than those of the random initialization method.

Authors
Aldahdooh, Raed T
Ashour, Wesam M.
TypeJournal Article
Date2013
Subjects
clustering algorithm
cluster centroid initialization
initializing k-means
k-means seeding technique
index terms-k-means algorithm
Published inInternational Journal of Intelligent Systems and Applications
SeriesVolume: 5, Number: 2
PublisherModern Education and Computer Science Press
Citation
Item linkItem Link
License
Collections
  • Staff Publications- Faculty of Engineering [908]
Files in this item
Ashour, Wesam M._8.pdf1.288Mb
Thumbnail

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback
 

 

Browse

All of IUGSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsSupervisors

My Account

LoginRegister

Statistics

View Usage Statistics

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback