• العربية
    • English
  • English 
    • العربية
    • English
  • Login
Home
Publisher PoliciesTerms of InterestHelp Videos
Submit Thesis
IntroductionIUGSpace Policies
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Faculty of Information Technology
  • PhD and MSc Theses- Faculty of Information Technology
  • View Item
  •   Home
  • Faculty of Information Technology
  • PhD and MSc Theses- Faculty of Information Technology
  • View Item

Please use this identifier to cite or link to this item:

http://hdl.handle.net/20.500.12358/20145
TitleMelanoma Detection Using Mobile Technology and Feature-Based Classification Techniques
Untitled
Abstract

Melanoma is one of the most dangerous types of skin cancer in terms of the ratio of death cases. Probability of death increases when it is diagnosed late. However, it is possible to treat melanoma successfully when diagnosed in its early stages. One of the most common medical methods for diagnosing melanoma is the ABCD (Asymmetry, Border irregularity, Color, and Diameter) method that involves the measurement of four features of skin lesions. The main disadvantage of this method is that estimation error and subjectivity affects the accuracy of diagnosis, especially when performed by non-specialists. Scarcity of specialists makes the problem worse. This has led to the development of computer systems to help in melanoma diagnosis. However, while most computer systems can achieve high accuracy with adequate speed, they have problems in the usability and flexibility. The emergence of smart phones with increasing image capture and processing capabilities has made it more possible to use such devices to perform medical image analysis such as the diagnosis of melanoma. Our research work combines existing melanoma diagnosis method and the image capture and processing capabilities of smart phones to achieve fast, affordable, easily available and highly accurate melanoma diagnosis. In this work, we propose a complete smart phone application to capture, and process an image of the suspicious region of the skin in order to estimate its probability of being melanoma. The system can use historical cases to improve its diagnosis accuracy. The system was tested on 164 sample images. 14 images were not well-captured and could not be diagnosed, while the remaining 150 cases were successfully processed. In each of these 150 images, the lesion was correctly segmented and their ABCD feature set extracted. Diagnosis accuracy of the analyzed images ranged between 88%-94 with best results using SVM classifier, and worst is the KNN classifier.

Authors
Ibrahim, Salim Al Halaby
Supervisors
Shraf, Elattar
Typeرسالة ماجستير
Date2014
LanguageEnglish
Publisherالجامعة الإسلامية - غزة
Citation
License
Collections
  • PhD and MSc Theses- Faculty of Information Technology [124]
Files in this item
file_1.pdf3.601Mb
Thumbnail

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback
 

 

Browse

All of IUGSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsSupervisors

My Account

LoginRegister

Statistics

View Usage Statistics

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback