• العربية
    • English
  • English 
    • العربية
    • English
  • Login
Home
Publisher PoliciesTerms of InterestHelp Videos
Submit Thesis
IntroductionIUGSpace Policies
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Faculty of Engineering
  • PhD and MSc Theses- Faculty of Engineering
  • View Item
  •   Home
  • Faculty of Engineering
  • PhD and MSc Theses- Faculty of Engineering
  • View Item

Please use this identifier to cite or link to this item:

http://hdl.handle.net/20.500.12358/18783
TitleEnhancing and Combining a Recent K-means Family of Algorithms for Better Results
Untitled
Abstract

Clustering is widely used to explore and understand large collections of data. K-means clustering method is one of the most popular approaches due to its ease of use and simplicity to implement. In this thesis, the researcher introduces Distance-based Initialization Method for K-means clustering algorithm (DIMK-means) which is developed to select carefully a set of centroids that would get high accuracy results compared to the random selection of standard K-means clustering method in choosing initial centroids, which gets low accuracy results. This initialization method is as fast and as simple as the K-means algorithm itself with almost the same low cost, which makes it attractive in practice. The researcher also Introduces Density-based Split- and -Merge K-means clustering Algorithm (DSMK-means) which is developed to address stability problems of K-means clustering, and to improve the performance of clustering when dealing with datasets that contain clusters with different complex shapes and noise or outliers. Based on a set of many experiments, this research concluded that the developed algorithms are more capable to finding high accuracy results compared with other algorithms especially as they can process datasets containing clusters with different shapes, densities, non-linearly separable, or those with outliers and noise. The researcher chose the experiments datasets from artificial and real-world examples off the UCI Machine Learning Repository.

Authors
Aldahdooh, Raed Tawfiq
Supervisors
Ashour, Wesam M.
Typeرسالة ماجستير
Date2013
LanguageEnglish
Publisherالجامعة الإسلامية - غزة
Citation
License
Collections
  • PhD and MSc Theses- Faculty of Engineering [641]
Files in this item
file_1.pdf3.527Mb
Thumbnail

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback
 

 

Browse

All of IUGSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsSupervisors

My Account

LoginRegister

Statistics

View Usage Statistics

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback