 Home
 Browsing by Author
Browsing by Author "aasad"
Now showing items 18 of 8

A GENERALIZATION OF D’ALEMBERT, JENSEN AND QUADRATIC FUNCTIONAL EQUATIONS ON SEMIGROUPS
As’ad, As’ad Y.; El Halab, Samah; El Soosy, Sahar (الجامعة الإسلامية  غزة, 2004)A GENERALIZATION OF D’ALEMBERT, JENSEN AND QUADRATIC FUNCTIONAL EQUATIONS ON SEMIGROUPS 
Centrality in BL (X), The Banach algebra of bounded linear operators
As’ad, As’ad Y.; Sarsuor, Jasser H (KING FAHD UNIV PETROLEUM MINERALS, 2002)In this paper we show that for a complex Banach algebra A = BL(X) of all bounded linear operators on the Banach space X, the set of all rhoquasi central elements of A is a subset of each of. (i) the set of all discrete ... 
Centralizing in a Complex banach algebra
As’ad, As’ad Y. (الجامعة الإسلامية  غزة, 2002)Centralizing in a Complex banach algebra 
Some properties of centrality in a complex BanachalBebra
As’ad, As’ad Y.; Sarsour, Jasser H. (الجامعة الإسلامية  غزة, 2001)Some properties of centrality in a complex BanachalBebra 
SOME PROPERTIES OF CENTRALIZING IN A UNITAL COMPLEX BANACH ALGEBRA
As’ad, As’ad Y. (الجامعة الإسلامية  غزة, 2004)SOME PROPERTIES OF CENTRALIZING IN A UNITAL COMPLEX BANACH ALGEBRA 
Some Remarks of Centrality in a Nonunital Complex Banach Algebra.
As’ad, As’ad Y. (2006)We show under certain condition that the set of all ρquasi central elements of a nonunital complex Banach algebra A is a subset of the set of all ρquasi central elements of A*, the unitization of A. Also we show under ... 
σ  Quasi Centralizers and Inner Derivations in a Closed Ideal of a Complex Banach Algebra.
As’ad, As’ad Y. (الجامعة الإسلامية  غزة, 2008)In this paper we show that, for a closed ideal J of a unital complex Banach algebra A and for a σ quasi centralizer element a of J in A we have (i) under certain conditions if b is an element in the center of J and π : J ... 
المؤثرات ذات القوة r الدائرية
As’ad, As’ad Y.; Salman, Atef (الجامعة الإسلامية  غزة, 2010)In this paper, we prove that any bounded linear operator on a separable Banach space is circlecyclic if and only if it is hypercyclic. As a continuation of studying cyclic phenomena we define and study a new concept called ...