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Abstract

The autocorrelation function, ACF, is an important guide to the
properties of a time series. We derive explicit equations for ACF in the
presence of heteroscedasticity disturbances in first-order autoregres-
sive, AR(1), models. We present two cases: (1) when the disturbance
follows the general covariance matrix, X, and (2) when the diagonal
elements of X are not all identical but ¢;; = 0% ¢ Z j. In addi-
tion, we derive an equation to transform a model with heteroscedastic

disturbances such that the model has homoscedastic disturbances.
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1 Introduction

When the disturbance terms are identically distributed, 1t implies they have
the same variance for all observations. Thiz 12 known as homoscedasticity. [If
they are not, 1t causes serious problems for our estimates and must be cor-
rected if we are to obtain reliable estimates. A sequence or a vector of random
variables 15 heteroskedastic, or heteroscedastic, if the random variablezs have
different variances. The term means "differing variance" and comes from the
Greek "hetero" ('different’) and "skedasis" ('cispersion’). Heteroscedastic-
ity 1s a deviation from the identically distributed assumption because the
variances are not the same for each value. Heteroscedasticity naturally arises
when the cbservations are based on average data, and in a number of random
coefficient models.

The econometrician Robert Engle won the 2003 Nobel Memorial Prize
tor Economies for his studies on regression analysis in the presence of het-
eroscedasticity, which led to his formulation of the ARCH (AutoRegressive
Conditional Heteroscedasticity) modeling technique.

The consequences of Heteroscedasticity are serious. While parameter esti-
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mates remain unbiased, they are no longer efficient, 1.e.. no longer best linear
unbiased estimator (BLUE). Since the estimated error’s variance-covariance
1z not efficient, 1t invalidates the t-statistic and sometimes making nsigmfi-
cant variables appear to be statistically significant.

This paper 1s organized as follows. In section 2 we introduce the re-
view of the literature. In Section 3 we derive explicit equations for ACF 1n
the presence of heteroscedasticity disturbances in first-order autoregressive,
AR(1l), models. In addition, we derive an equation to transform a model
with heteroscedastic disturbances such that the model has homoscedastic
disturbances. Section 4 summarizes the results and offers suggestions for
future research on deriving explicit equationz for ACF in the presence of

heteroscedasticity disturbances.

2 Review of the Literature

The disturbance term in time series data 13 modeled under an assumption
of constant varance and the assumption of heteroscedastic disturbances has
traditionally been considered in the context of cross-sectional data. With
time series data the disturbance term 1s modeled with some kind of sto-
chastic process, and most of the conventional stochastic processes assume

homoscedasticity (Judge et al., 1985). Studies of many econometric time
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series models for financial markets revealed that it i1z unreasonable to as-
sume that conditional variance of the disturbance term 1s constant, as 1t for
many stochastic processes. Two exceptions are the heteroscedastic stochastic
processes proposed by Engle (1982) and Cragg (1982). Engle (1982}, showed
that, for many economic models, it 1s unreasonable to assume that the con-
ditional forecast varance var (y:|y:—1) 1s constant, and that is more realistic
to assume that var (y;|y;—;) depends on y;_;.

Bumb, and Kelejian (1983) have studied the autocorrelated and het-
eroscedastic disturbances 1in linear regression analysis. They discussed vari-
ous procedures to test for the possibility that the disturbance terms of a linear
regression model are autocorrelated 1n a first order process with a constant
autoregressive coefficient.

Heteroscedasticity 1z a problem often faced by statisticians and econome-
tricians. There 15 a large literature on estimating and testing heteroscedas-
ticity, see for example, Wallentin and Agren (2002}, Kalirajan, K. P. (1989),
Evans and King (1988) and Farebrother (1987). Praetz (2008) discussed the
effect of autocorrelated disturbances when they are not modeled on the sta-
tistics used in drawing inferences in the multiple linear regression model. He
derived biases for the F and R? statistics and evaluates them numerically
for an example. He discussed the reflections for empirical research on the

causes, detection and treatment of autocorrelation.
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3 Autocorrelation Function (ACF)

The autocorrelation function, abbreviated ACF, i1s an important guide to the
properties of a time series. It measures the correlation between observations
at different distancez apart. Thiz behavior 15 a powerful tool to identify a
preliminary model for the time series. The ACF gives a better understanding
of correlation structure of the data, and, within the Box Jenkins framework,
a rough 1dea of the order of the components to be used 1n any autoregressive

model.

3.1 General Heteroscedastic Autocorrelation Function
(GHACF)

In autoregressive models, the current value of the process 1s expressed as a
finite, linear aggregate of previous values of the process and a noise e;. Let

the values of a process at equally spaced times £, t — 1, 1 —2, ..., denoted by

Zf': Zt—l.- Zg-_g_. P Theﬂ Zt == @]Zf_] T QgZ—g_Q T + [':.’]}JZI—P T EI iS ca"ed
an autoregressive process of order p, abbreviated AR(p).
The p-th order autoregressive process may be written 1in terms of back-

ward shift operator B

Zy=(1—¢;B—--—,B")" e (3.1)
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The first-order autoregressive process, AR (1), Z; = (1 — ¢B)™' e; may be

written as

o0
Z, =Z¢Jet_j__ t=0.+1 42 (3.2)
j=0

AR (1) 15 causal, 1.e. |o| < 1. In this paper it will be assumed that the
disturbance term has mean zero, E (e) = 0, and the covariance matrix

Cov (e;,€;) = £ = o> where

Ty T3 .. T
5 T21 To9 ... Oxn

Y =00 = (3.3)
1 T2 .. Oy

Note e is a random vector with E (e) = 0 and E (ee) = £ = ¢’ ¥,
autocorrelation exists if the disturbance terms corresponding to different ob-

gervations are correlated, that 1z, 1f ¥ 1s not diagonal.

Definition 3.1 The covariance between Z; and Z;. .. separated by k intervals
of time, which under the stationary assumption must be the same for all i, is
called the autocovariance function at lag k, abbreviated ACVF, and is defined
by

’:'lFC - CGJU th._ Zt—."ﬂ:] - E [th - IMJI' [ZH'R' - }'.J[| {3—1-\.'

In thiz paper we are assuming that Z; has zero mean. We can always

mtroduce a nonzero mean by replacing Z; by Z; — i throughout our equations.
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Definition 3.2 The autocorrelation function at lag k, that is the correlation

between Z; and Z;.; is defined by

Pr = L (3.5)

~

‘0

where v, = 0% is the same at time t + k as at time t.

Lemma 3.1 Consider a first-order autoregressive model with parameter ¢,
Zy = 0Z;_ + e, with E (e;) =0, and Cov (e;, e;) = X, where I is given in
(3.3). Then the autocovariance function at lag k is given by
t—k—1 i—1
Te = Z Z ‘—"J“rﬂfft—i:t—k—j (3.6)
j=0 =0
Proof. Using Defimtion (3.2). the AR(1) model can be written as

i—1
Z;=(1-0¢B) e, =Y ¢'Ble
=0

=0
Then
t—1 t—k—1
ZiZ_f = (Z U“et—:) ( Z ujef—k—z)
=0 j=0
t—k—1 t—1

Using Defimtion (3.4), the ACVF at lag k& 1s

t—k—1 t—1
E E ey

j=0 =0
t—k—1 t—1 t—k—1 t—1

= GITE (e, p_;) = Z Z R P |
—o

j=0 =0 j=0 =

'H.,-k = E :Zth_k] = E
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The next theorem derives the GHACF at lag k£ when g; ; # 0 for all i # j

in AR(1) models.

Theorem 3.1 Suppose the disturbance term follows the general covariance
matriz, i.e. Cov(e;,ej) = X, where X is given in (3.53) with g;; # 0 for all

i # j. Then the GHACF at lag k is given by

t—k—1 t—2 t—j—1
o (t+j—k
E E & O ik + E E O o
j—O i=0 j=0 i=1
= - 3.7
pk‘ i =2 t— _i' 1 [ \:I
+
E E J Ut— - J1_ + E E [w] J gt— _,}
J=0 =0 =0 i=1

Proof. Using (3.6}, the ACVF at lag 0

r \ ' 2
O+ 0(0rs1 +0012) + 0 (Tep2 +0r10-1 +0ras) +

I \

O (Ots-a 4+ Te1 -2+ 1241+ Te—3¢) + -+
= i1
] O (Oe1+ 00+ gzt -+ 01)+

Ry .

O Ot—11 +0t—22+ Ttaz+ -+ 01e—1)+- -+

23 y LD

021‘ [‘0—]2_“0—-}_[’] —sz 2(7[]

Collecting terms, we find that the ACVF at lag 0, 1.e. the variance of the

process 1s

J t—2 t—j—1

ZZU Tt—it— —j+i +ZZU+JJ1&:J1. [38‘:'

3=0 =0 =0 =1
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Tgs1+ O (0esa+0e151) + ¢’ (O3 + 0142+ 0t2s1)+
& (O¢pms + Om1 -3 + Ot9s_9+0sge1) + -+

1= ¢! (Oe—11 + 020+ 033+ + O1t—1)+
& (O4—21 + Tp_a2 + T sat- - +oa) 4+

24 \ 23
' (091 +012) + 07 "oy

Collecting terms, we find that the ACVF at lag 1 1s

t—=2 t—2 t—j—1 .
= Zdj Tpgtjrii +Z Z k. Te—i—ji (3.9)
Jj=0 i=0 j=0 =1
Smularly, the ACVF at lag k£ 1s
t—k—1 ] t—2 t—j—
T = Z ZU Tt—it—j+i k_z Z UH_J * Tt—i—ji {310\:'
=0 =0 J=0 =1

Dividing (3.10) by (3.8), we get (3.7), and that completes the proof. m

3.2 Heteroscedastic Autocorrelation Function (HACF')

Heteroscedasticity exists if the diagonal elements of ¥ 1n (3.3) are not all
identical and the disturbance term 1s free from autocorrelation. In other
words, the disturbances are pairwise uncorrelated. This assumption 12 likely
to be realistic one when using cross-sectional data. In this case ¥ can be
written as a diagonal matrix with the ith diagonal element given by ;. We
assume E (e;) = 0, and Cov (e;, e;) = X, where ¥ = diag (0,,,09,....04) .

Thus
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g, 0 0
0 oy ... 0

Cov(e;.ej) =% = (3.11)
o 0 Ty

The next theorem derives the HACF, at lag k when o;; = 0 for all i # j, 1.e.

¥ =diag (0,099, -- -, a,) I AR(1) models.

Theorem 3.2 Consider AR(1) model with parameter ¢. Z; = ¢Z;_ +e;, E

(e;) =0. and Cov (e;, e;) = X, where ¥ = diag (0. 0y,y,...,0,,) as given in

(3.11). Then HACF at lag k is given by

t—1
E QQE_kUt—:'._t—:'
i=k

e

i1
E OQiUt—:‘,t—«;
i=0

Proof. Using (3.6) the ACVF at lag 0,

(3.12)

Yo=0u4+0%0,_ 1, +&0, o, o+ - +06" %0,,. Then the ACVF at lag

0, i.e. the variance of the process is

t—1
Vo= &G i (3.13)
i=0
The ACVF at lag 1
Y1 =00, 144+ cf"cri_gzt_2 + .-+ ogt'ﬂcr“_ Then the ACVF at lag 1 is
t—1
py = Z uh—lgt_”_é {3]_1)
i=1
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Similarly, the ACVF at lag k is
t—1
Yo=Y o (3.15)
Dividing (3.15) by (3.13), we get (3.12), and that completes the proof. m

Homoscedasticity exists if the diagonal elements of X in (3.3) are all
1dentical and the disturbance term, e, 1s tree from autocorrelation. 1.e. g;; =0
for all i % j. In this case, the disturbance term is a sequence of independent,

1dentically distributed random variables.

e

Corollary 3.1 Suppose in the previous theorem g;; = 0 for all 1 # j. and

Var(e,) = o for all t, by taking t — o0 in (3.13), (3.14), and (3.15), we

. 0_'2 {72 d . 0_2
get 7o = = o, and 7 = ¢
1—¢ 1—&? 1—&

ACF at lag k is given by p, = &F. k = 0, which is the well known ACF for

= respectively. Then the

AR(1) process.

The main objective of the next theorem 1z to transtorm a model with
heteroscedastic disturbances such that the model has homoscedastic distur-
bances. We start with AR(1) process assuming that e; has N (0,02 Py ), then
we derive an equation which 1s a function of the autoregressive coefficient, ¢,
and the covariance matrix. ¥4, but with new disturbance term that follows

N(0,0?)
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Theorem 3.3 Let Z; = 0Z;_ + e; where e; has N {U:_azlllﬁ‘] Define W; =

Zy — Zpy . - A (PRSP — . - - e;
—_— then W, = (¢ —1) /| ——o Wi_;_y + 0;, where 0; =
Now T ) \‘ T, ; t—j—1 t t Noow

has N (0,c?) | provided that ¥ is a full positive definite matriz. i.e. Z0Z >
0.

Zi— Z
Proof. Recall Z; = ¢Z,_, + e; and define W, = == =" then

Ve

QZI—[ +e; — Zt—l.
Ve
L)' — l | Zr 1 e;

v Wy VW
Then

W =

=+

—_— Zg-_] T 65-:. where dt = ~ N {U‘ a } {316‘\.'

Similarly,
. Zt—1 — Zi—2
Wit = ————
v/ P11
Zyy — BZ,_
= “——H where B 1s backward shitt operator, BZ; | = Z;_»
VA TET

_U-B)Z,
YA Fmpes
Then

\/""I't—l:t—l (1—B)" Wiy = Zey (3.17)
By substituting {3.17) in (3.16) we get

_ W, ]
W, = (¢ — 1) ‘»$ (1 —B)™ Wiy + 6,

Wy
i P lt_l j 1 .
=(¢—1), ——— E BIW,_, + 6, (1-B) = E B
o — 1] V e, -1 ¢ | )

=0 j=0

=fu—].| t';plt LGt—j [+ﬂt-
17
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4 Summary and Future Research

This paper has investigated an important statistical problem concerning the
autocorrelation function, ACF, in the presence of heteroscedasticity distur-
bances in first-order autoregressive, AR(1), models. We have derived explicit
equations for ACF when the disturbance follows the general covariance ma-
trix, 3 and when the diagonal elements of 3 are not all identical but ¢; ; = 0
Vi#j 1e. ¥ =diag(o,,,09.....0,). In addition, we have derived an
equation to transform a model with heteroscedastic disturbances such that
the model has homoscedastic disturbances.

The plan of the future research 1z to extend the explicit equations that
we have derived in this paper for ACF in the presence of heteroscedastic-

1ty disturbances in the general form of the autoregressive models, 1.e. 1n

autoregressive models with order p, AR(p).
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