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Abstract: This paper introduces two robust forecasting models for efficient 
forecasting, Artificial Neural Networks (ANNs) approach and Autoregressive 
Integrated Moving Average (ARIMA) models. ANNs approach to univariate 
time series forecasting and relevant theoretical results are briefly discussed. 
To choose the best training algorithm for the ANN model, several 
experimental simulations with different training algorithms are made. We 
compare ANNs approach with ARIMA model on real data for electricity 
consumption in Gaza Strip.  
    The main finding is that, comparison of performance between the two 
proposed models reveals that ANNs outperform and preferable in selecting 
the most appropriate forecasting model over the ARIMA model. 
Keywords: Forecasting, Box-Jenkins methodology, Neural Networks, 
Multilayer Perceptrons. 

  

، الشبكات العصبية القوية نماذج التنبؤ اثنين منفي هذا البحث تم استعراض  :ملخص
    (ARIMA) . المتوسط المتحرك-التكاملي-نماذج الانحدار الذاتيو  (ANNs) الاصطناعية

منية وكذلك للتنبؤ في السلاسل الز تم مناقشة استخدام طريقة الشبكات العصبية الصناعية    
  التجريبية عمليات المحاكاة العديد منتم استخدام  .ذات الصلة عرض مبسط لبعض النتائج النظرية

نتائج تم مقارنة  .الشبكات العصبية الصناعية لنموذج خوارزمية أفضل ختياراوذلك من أجل 
 ك الكهرباءستهلابيانات لا وذلك بتطبيقها على  ARIMA مع استخدام الشبكات العصبية الصناعية

استخدام نماذج الشبكات  للبحث هي أن النتيجة الرئيسة. 2011-2000في الفترة  .قطاع غزة في
  . ARIMAالتنبؤ من نموذج أفضل في  العصبية الصناعية

 
1. Introduction 
Neural networks are the preferred tool for many predictive data mining 
applications because of their flexibility, power, accuracy and ease of use.  
Electricity consumption forecasting is an important issue for energy service 
companies. Having reliable electricity consumption forecasting information 
will make better financial decision. The electricity consumption influence 
factors, such as load, weather, market forces, and bidding strategy are 
undulating and undetermined, so the consumption forecasting with high 
precision is more difficult, see for example  Pousinho, H., et al. (2012) and 

http://www.iugaza.edu.ps/ar/periodical/


Samir Safi 

2 

Unsihuay, V., et al. (2010). Therefore, it has becoming the commonly and 
difficulty problem to forecast electricity consumption in competitive 
markets all over the world. 
In 1976, Box–Jenkins used statistical models to forecast the financial 
market, Box, G. & Jenkins, G. (1976). However, the statistical methods 
assume that data are linearly related and therefore is not true in real life 
applications. The newly introduced method, the artificial neural network 
(ANN) has emerged to be popular as it does not make such assumptions. 
The ANN which is inherently a nonlinear network and does not make such 
assumptions therefore is well suited for prediction purpose. 
Mabel, M. and Fernández, E. (2008), showed that with the development of 
artificial technique, some artificial intelligent prediction methods have been 
discussed, including ANNs. To attain better performance, most proposed 
models are combinations of several kinds of the upper methods, see for 
example Barbounis, T. and Theocharis, J. (2007).   
In this study, ARIMA and the ANN have been conducted for electricity 
consumption forecasting. The time series models such as ARIMA model is 
used to find the potential forecasting model. During the calculation process 
of time series modeling, the Autocorrelation Function (ACF), the Partial 
Autocorrelation Function (PACF) and the Extended Autocorrelation 
Function (EACF) criterion will be adopted. 
The purpose of this work is to find a simple and reliable forecasting model 
for the electricity consumption in Gaza Strip. This paper is organized as 
follows: Section 2 presents overview and literature of ANN; Section 3 
illustrates some basic concepts and definitions; Sections 4 and 5 display two 
forecasting cases fitting ARIMA and ANN models for electricity 
consumption data; and Section 6 concludes some important results of this 
work. 
Data Source: We use a data set of electricity consumption from Palestinian 
Energy Authority-Gaza branch. The dataset contains the monthly 
consumption of electricity in Gaza Strip during the period January 2000 
through December 2011. 
2. Overview and Literature of ANN 
The ANN has been used in signal processing due to its nonlinear capacity 
and robust performance. The structure of the ANN is very important for its 
performance. Cadenas, E. and Rivera, W. (2009) showed that three-layer 
network is enough to fit any non-stationary signal. In ANN theory, the 
training data format can affect the performance of network directly. 
ANNs constitute one of the most powerful tools for pattern classification 
due to their nonlinear and non-parametric adaptive-learning properties. 
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Many studies have been conducted that have compared ANNs with other 
traditional classification techniques, since the default prediction accuracies 
of ANNs are better than those using classic linear discriminant analysis and 
logistic regression  techniques, see for example Lee, T. and Chen, I., (2005) 
and Lee, T., et al. (2002).  
The Multilayer Percepteron (MLP) produces a predictive model for one or 
more dependent  variables based on the values of the predictor variables. 
Blanco, A., et al. (2013) introduced several non-parametric credit scoring 
models based on the MLP approach and benchmarks their performance 
against other models which employ the traditional linear discriminant 
analysis, quadratic discriminant analysis, and logistic regression techniques. 
Based on a sample of almost 5500 borrowers from a Peruvian microfinance 
institution, the results reveal that neural network models outperform the 
other three classic techniques both in terms of area under the receiver-
operating characteristic curve (AUC) and as misclassification costs. 
ANN usually uses Back Propagation (BP) as its training algorithm. To 
improve the performance of the neural network with BP, more training 
algorithms have been reported in recent years, including Quick Back 
Propagation (QBP), Resilient Back Propagation (RBP), Broyden – Fletcher 
– Goldfarb - Shanno Quasi-Newton Back Propagation (BFGS). Liu, H., et 
al. (2012) showed that BGFS algorithm  gives the best performance. Hence, 
BGFS algorithm is chosen as the training algorithm of the ANN model.  
Majhi, B. et al., (2012) introduced two robust forecasting models for 
efficient prediction of different exchange rates for future months ahead. 
These models employ Wilcoxon artificial neural network (WANN) and 
Wilcoxon functional link artificial neural network (WFLANN). Comparison 
of performance between the two proposed models reveals that both provide 
almost identical performance but the later involved low computational 
complexity and hence is preferable over the WANN model. 
Many hybrid models have been suggested using the ANN for exchange rate 
forecasting. Khashei, M. and Bijari, M. (2011) proposed a novel 
hybridization of artificial neural networks and ARIMA model in order to 
overcome limitation of ANNs and has been demonstrated it to be a more 
accurate model than the traditional ones. This model has the unique 
advantages of ARIMA models in linear modeling to identify and magnify 
the existing linear structure in the data, and then a neural network is used in 
order to determine a model to capture the underlying data generating 
process and predict, using preprocessed data. 
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3.  Preliminaries 
This section introduces some basic definitions and concepts. 
 

The Multilayer Percepteron (MLP) 
MLP networks are constructed of multiple layers of computational units. 
Each neuron in one layer is directly connected to the neurons of the 
subsequent hidden layer. MLP utilizes a supervised learning technique 
called back propagation (BP) for training the network, which is the most 
popular being used. Each MLP is composed of a minimum of three layers 
consisting of an input layer, one or more hidden layers and an output layer. 
The input layer distributes the inputs to subsequent layers. Input nodes have 
linear activation functions and no thresholds. Each hidden unit node and 
each output node have thresholds associated with them in addition to the 
weights. The hidden unit nodes have nonlinear activation functions and the 
outputs have linear activation functions (See for example, Walter, H. and 
Michael, T., 2005, and  Nazzal, J., et al. , 2008). MLPs using a BP algorithm 
are the standard algorithm for any supervised learning pattern recognition 
process.  
 It has been shown most problems it would be enough to have 
only one layer of hidden neurons, Hornik, K., et al. (1989).  
 The mathematical representation of the function applied by the 
hidden neurons in order to obtain an output value pjb , when faced with the 
presentation of an output vector ,,,,: 1 pNpipp xxxX KK  is defined by: 
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where Lf is the activation function of hidden neurons j  , ijw  is the weight of 
the connection between input neuron i and hidden neuron j and pix is the 
input signal received by input neuron i  for pattern p . 
 Once the output of the output neurons is concerned, it is 
obtained using 
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where pkŷ is the output signal provided by output neuron k  for pattern p ,  

Mf  is the activation function of output neurons M  , kθ  is the threshold of 
output neuron k  and kjv is the weight of the connection between hidden 
neuron j and output neuron k , Moreno, J., et al. (2011). 
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MLP allow a neural network to perform arbitrary mappings. A 2-hidden 
layer neural network is shown in Figure 3.1. The aim is to map an input 
vector x  into an output ( )xy ). 

 
Figure 3.1: A 2-Hidden Layer Neural Network 

 
The overall performance of the MLP is measured by the mean square error 
(MSE) expressed by : 
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where, vN  is a set  of training patterns ( )pp tx , where P represents the pattern 
number. 

PX  corresponds to the N-dimensional input vector of the thp  training 
pattern and PY  corresponds to the M-dimensional output vector from the 
trained network for the thp  pattern. 

Note ( ) ( )[ ]∑
=

−
M

i
pp iyit

1

2 Corresponds to the error for the thp pattern and pt  is 

the desired output for the thp  pattern (Nazzal, J., et al. 2008). 
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ARIMA Models 
A time series { }tY is said to follow an autoregressive-integrated moving 

average model (ARIMA) if the dth difference d
t tW Y= ∇  is a stationary 

ARMA process. If { }tW follows and ARMA(p,q) model, we say that { }tY is 
an ARIMA (p,d,q) process. An ARIMA (p,d,q) time series can be 
represented in a shorter form using the notation of lag operator.  
          The lag operator B , is defined as t t 1BY Y −= , the operator which 
gives the previous value of the series.  
 
Definition: The general ARIMA(p,d,q) process is given by (Box, G., et al. 
1994) 

 
d

t t(B) Y (B) ,φ ∇ = θ ε  
 

(3.4) 
where d 1≥   is the degree of differencing, 1 B∇ = −  is the differencing 
operator, (B)φ  and (B)θ  are polynomials of degree p and q in B, 

2 p
1 2 p(B) 1 B B Bφ = − φ − φ − − φL  (3.5) 

and  
2 q

1 2 q(B) 1 B B . Bθ = − θ − θ − − θL  (3.6) 

Stationarity requires the roots of (B)φ to lie outside the unit circle, and 
invertibility places the same condition on the roots of (B)θ . 
 
Mean Squared Error 
Many measures of forecast accuracy have been developed in the past , and 
several authors have been made recommendations about what should be 
used comparing the accuracy of forecast methods applied to univariate time 
series data. For example, Hyndman, R. and Koehler, A. (2005) introduced 
the Mean Square Error (MSE) as a measure of dispersion between the actual 
and the predicted value. 
 
Definition: The MSE is given by: 

( )
2N

i i
i 1

1 ˆMSE Y Y ,
N −

= −∑  
 

(3.7) 

where  Yi is the actual value of the  ith  iteration and , iŶ  is the predicted 
value of the same  ith iteration. MSE is one of the most commonly used 
measures of forecast accuracy. 
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AIC Criterion 
Akaike’s (1973) information criterion (AIC) plays a major role for selecting 
the best order of the ARIMA (p,d,q) model when we have several models 
that all adequately represent a given set of time series.  
 
Definition: Suppose { }tY  is a Gaussian autoregressive ARMA(p,q) process 

with coefficient vector Θ ( ),= φ θ .  For a zero-mean causal invertible 
ARMA(p,q) process, the AIC is given by 
 

( ) ( )( )x xAIC 2ln L ,S n 2k,Θ = − Θ Θ +  (3.8) 

where ( )( )x xL ,S nΘ Θ  is the likelihood function, n  is the sample size, and 
k  is the total number of parameters, i.e. k p q 1= + + . 
For fitting autoregressive models, Jones, R. (1975) and  Shibata, R. (1976) 
suggested that AIC has a tendency to overestimate p. The AIC is a biased 
estimator, Hurvich and Tsai (1989) showed that the bias can be 
approximately eliminated by adding another nonstochastic penalty term to 
the AIC, resulting in the corrected AIC, denoted by AICc and defined by the 
formula 

( )( )
c

2 k 1 k 2
AIC AIC

n k 2
+ +

= +
− −

 
(3.9) 

BIC Criterion 
Schwarz's Bayesian information criterion (1978), known as (BIC) is another 
criterion that attempts to correct the overfitting nature of the AIC. For a 
zero-mean causal invertible ARMA(p,q) process, the BIC is given by: 
 

( ) ( )( ) ( )x xBIC 2ln L ,S n k log nΘ = − Θ Θ +  (3.10) 

 
As a rule of thumb, we would expect as small value as possible for all of 
these criteria to select the most appropriate autoregressive model. 
KPSS test 
The most commonly used stationarity test, the KPSS test, is due to 
Kwiatkowski, Phillips, Schmidt and Skin (1992). They derived their test by 
starting with the model 

( )
t 0 1 t t

2
t t 1 t t

Y t u

, ~ WN 0, ,− ε

= β + β + θ +

θ = θ + ε ε σ
 

(3.11) 
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where tu is stationary time series and is said to be integrated of order zero, 
I(0) and may be heteroskedastic. The null hypothesis that tY  is I(0) is 
formulated as 2

0H : 0εσ = , which implies that tθ  is a constant. This test also 
implies a unit moving average root in the ARMA representation of tY∇ .  
 
Definition: The KPSS test statistic is the Lagrange Multiplier (LM) or score 
statistic for testing 2

0H : 0εσ =  versus 2
aH : 0εσ >  and is given by (Kozhan, 

R., 2010) 
T

2 2 2
t

t 1

ˆ ˆKPSS T S ,−

=

= β∑  
(3.12) 

where 
t

2
t j

j 1

ˆ ˆS u
=

= ∑ , tû is the residual of a regression tY on t and 2β̂  is a 

consistent estimate of the long-run variance of tu  using tû . 
Ljung-Box portmanteau test  
Portmanteau test firstly has been studied by Box, G. and Pierce, D. (1970). 
Ljung, G. and Box, G. (1978) proposed a modified version of that test. 
 
Definition: Ljung-Box LBQ%  portmanteau test  is  

2

1

ˆˆ( ) ( 2) ,
=

= +
−∑%
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k
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k

rQ r n n
n k

 
(3.13) 

where k̂r is the sample autocorrelation of order k of the residual and n is 
the sample size, and m is the number of lag. Notice that ( ) ( )n 2 n k 1+ − >  
for k 1≥ . 
 
The Autocorrelation Function (ACF) 
Definition: For a covariance stationary time series { }tY  the autocorrelation 
function kρ  is given by  

( , )−= tk t kCorr Y Yρ  for 1, 2, 3,k = K  (3.14) 
 
ACF is a good indicator of the order of the MA(q) model since it cuts off 
after lag q (i.e. kρ k = 0 for k > q ). On the other hand the ACF tails off for 
AR(p) model.  
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The Partial Autocorrelation Function (PACF) 
Definition: If { tY } is normally distributed time series, then the PACF at 
lag k is given by  

1 2 1( , | , , , )t t tkk t k t kCorr Y Y Y Y Yφ − −− − += K  (3.15) 
 

PACF is a good indicator of the order of the AR(p) model since it cuts off 
after lag p (i.e. kkφ  = 0 for k > p ). On the other hand the PACF tails off for 
MA(q) model.  
 

The Extended Autocorrelation Function (EACF) 
For a mixed ARMA model, ACF and PACF have infinitely many nonzero 
values, making it difficult to identify mixed models from the sample ACF 
and PACF. The extended autocorrelation function (EACF) (Tsay, R. and 
Tiao, G., 1984) is a graphical tool is used to identify the ARMA orders.  
 

Definition: (Cryer, J. and Chan, K., 2008) Let 

t ,k, j t 1 t 1 k t kW Y Y Y− −= − φ − − φ% %L  (3.16) 

be the autoregressive residuals defined with the AR coefficients estimated 
iteratively assuming the AR order is k and the MA order is j. The sample 
autocorrelations of t ,k , jW are referred to as the EACFs. Tsay, R. and Tiao, G. 
(1984) suggested summarizing the information in the sample EACF by a 
table with the element in the kth row and jth column equal to the symbol X 
if the lag j + 1 sample correlation of t ,k , jW  is significantly different from 0. 
In such a table, an ARMA(p,q) process will have a theoretical pattern of a 
triangle of zeroes, with the upper left-hand vertex corresponding to the 
ARMA orders. 
 

4. Fitting ARIMA Model for Electricity Consumption Data 
Consider the monthly consumption of electricity (in millions of kilowatt-
hours, MKWH) in Gaza Strip, from January 2000 through December 2011. 
R-statistical software is used for fitting ARIMA model for the time series. 
Figure 4.1 displays the time series plot. The series displays considerable 
fluctuations over time, especially since 2004, and a stationary model does 
not seem to be reasonable. The higher values display considerably more 
variation than the lower values. Note all Figures are shown in the Appendix. 
The sample ACF for the data is displayed in Figure 4.2. All values shown 
are “significantly far from zero,” and the only pattern is perhaps a linear 
decrease with increasing lag. This means that we are dealing with a 
nonstationary time series. 
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In addition, software implementation of the KPSS test for level stationarity  
applied to the original consumption leads to a test statistic of  3.9841 and a 
p-value of 0.01. With stationarity as the null hypothesis, this provides strong 
evidence supporting the nonstationarity and the appropriateness of taking a 
difference of the original series. 
The differences of the electricity values are displayed in Figure 4.3. The 
differenced series looks much more stationary when compared with the 
original time series shown in Figure 4.1. On the basis of this plot, we might 
well consider a stationary model as appropriate. 
KPSS test is applied to the differenced series leads to a test statistic of  
0.0156 and a p-value of 0.10. That is, we do not reject the null hypothesis of 
Stationarity. 
The sample ACF and PACF are shown in Figures 4 .4 and 4.5, respectively. 
It is quite difficult to identify the AR, MA, or mixed model from these 
figures. 
The sample EACF computed on the first differences of the electricity 
consumption series is shown in Table 4.1.  In this table, an ARMA(p,q) 
process will have a theoretical pattern of a triangle of zeroes, with the upper 
left-hand vertex corresponding to the ARMA orders. 

 
Table 4.1: EACF for Difference of Electricity Consumption Series 

 MA 

AR 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 
0 0 0 x X 0 X 0 0 0 0 0 0 0 0 
1 X 0 0 X 0* 0 0 0 0 0 0 0 0 0 
2 0 0 0 X 0 0 0 0 0 0 0 0 0 0 
3 x x x X 0 0 0 0 0 0 0 0 0 0 
4 x x x 0 0 0 0 0 0 0 0 0 0 0 
5 x x x x 0 X 0 0 0 0 0 0 0 0 
6 0 x x 0 0 0 0 0 0 0 0 0 0 0 
7 x 0 x x x 0 0 0 0 0 0 0 0 0 

 
Table 4.1 displays the schematic pattern for an ARMA(1,4) model. The 
upper left-hand vertex of the triangle of zeros is marked with the symbol 0* 
and is located in the p = 1 row and q = 4 column—an indication of an 
ARMA(1,4) model. The model for the original electricity consumption 
series would then be a nonstationary ARIMA(1,1,4) model.  
Different  combinations of ARIMA models with 5p q+ ≤ and their 
corresponding criteria are shown in Table 4.2. These choices confirm our 
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suggestion-ARIMA (1,1,4)- based on the smallest values of AIC, AICc, BIC 
and RMSE among the other ARIMA choices. 

 

Table 4.2: Different  combinations of ARIMA models 
Model Order AIC AICc BIC RMSE 
(1,1,0) 836.96 837.15 845.58 5.769887 
(2,1,0) 838.91 839.22 850.41 5.768732 
(3,1,0) 833.89 834.37 848.27 5.612885 
(4,1,0) 828.56 829.24 845.81 5.453366 
(5,1,0) 830.12 831.03 850.25 5.443784 
(0,1,1) 836.96 837.15 845.58 5.769885 
(0,1,2) 838.83 839.15 850.33 5.766890 
(0,1,3) 815.38 815.86 829.76 5.148814 
(0,1,4) 813.08 813.76 830.33 5.072234 
(0,1,5) 814.14 815.05 834.27 5.050224 
(1,1,1) 820.98 821.30 832.48 5.322629 
(1,1,2) 820.36 820.84 834.74 5.265777 
(1,1,3) 813.90 814.57 831.15 5.088764 
(1,1,4) 811.59 812.50 831.72 4.980446 
(2,1,1) 818.87 819.35 833.24 5.232006 
(2,1,2) 823.35 824.03 840.61 5.287416 
(2,1,3) 815.78 816.69 835.91 5.085641 
(3,1,1) 816.08 816.76 833.33 5.128288 
(3,1,2) 818.02 818.93 838.14 5.127499 
(4,1,1) 826.38 827.30 846.51 5.363132 

 
We use maximum likelihood estimation and show the results obtained from 
the R statistical software in Table 4.3. Here we see that 
ˆ 0.5743,φ = − 1 2 3

ˆ ˆ ˆ0.4091, 0.3326, 0.5791θ θ θ= = − − , and 4̂ 0.4974θ = − . We 
also see that the estimated noise variance is  2ˆ =24.99eσ . Noting the P-
values, the estimates of all autoregressive and moving average coefficients 
are significantly different from zero statistically, as is the intercept term.  
 

Table 4.3: Maximum Likelihood Estimates from R Software: Electricity 
Consumption Series 

Coefficients: AR(1) MA(1) MA(2) MA(3) MA(4) Intercept* 
 -0.5743 0.4091 -0.3326 -0.5791 -0.4974 0.4235 

SE 0.1822 0.1767 0.0817 0.1068 0.0814 0.0283 
T -3.1528 2.3151 -4.0703 -5.4205 -6.1074 14.9573 

P-value 0.0020 0.0222 0.0008 < 0.0001 < 0.0001 < 0.0001 
sigma^2 estimated as 24.99:  log likelihood = -398.8 AIC = 811.59   AICc = 812.5   

BIC = 831.72 
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* The intercept here is the estimate of the process mean µ  not of 0θ . 
 

The estimated model would be written 
( )1 1 2 3 40.424 0.574 0.424 0.409e 0.333e 0.579e 0.497e ,− − − − −− = − − + − + + +t t t t t t tW W e

 

(4.1) 

where 1t t tW Y Y −= − , and the intercept of ARIMA is ( )0 1 ,θ µ φ= − then 

( )0 0.4235 1 0.5743 0.6667θ = + = . Therefore, the estimated model is 
 

1 2 1 2 3 40.667 0.426 0.574 0.409e 0.333e 0.579e 0.4974e− − − − − −= + + + − + + +t t t t t t t tY Y Y e  (4.2) 
 
Figure 4.6 displays the time series plot of the standardized residuals from 
the ARIMA(1,1,4) model estimated for the electricity consumption time 
series. The model was fitted using maximum likelihood estimation. There is 
only one residual with magnitude larger than 1.  
A quantile-quantile plots are an effective tool for assessing normality. Here 
we apply them to the residuals of the fitted model. A quantile-quantile plot 
of the residuals from the ARIMA(1,1,4) model estimated for the electricity 
consumption series is shown in Figure 4.7. The points seem to follow the 
straight line fairly closely. This graph would not lead us to reject normality 
of the error terms in this model. In addition, the Kolmogorov-Smirnov of 
composite normality test applied to the residuals produces a test statistic of 
ks = 0.0546, which corresponds to a p-value of 0.50, and we would not 
reject normality based on this test.  
To check on the independence of the error terms in the model, we consider 
the sample autocorrelation function of the residuals. Figure 4.8 displays the 
sample ACF of the residuals from the ARIMA(1,1,4) model of the 
electricity consumption data. The dashed horizontal lines plotted are based 
on the large lag standard error of  2 0.174n± = ± . The graph does not 
show statistically significant evidence of nonzero autocorrelation in the 
residuals. In other words, there is no evidence of autocorrelation in the 
residuals of this model. These residual autocorrelations look excellent. 
In addition to looking at residual correlations at individual lags, it is useful 
to have a test that takes into account their magnitudes as a group. Figure 4.9 
shows the p-values for the Ljung-Box test statistic for a whole range of 
values of K from 6 to 20. The horizontal dashed line at 5% helps judge the 
size of the p-values. The Ljung-Box test statistic with K = 7 is equal to 
2.996. This is referred to a chi-square distribution with two degrees of 
freedom. This leads to a p-value of 0.2236, so we have no evidence to reject 
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the null hypothesis that the error terms are uncorrelated. The suggested 
model looks to fit the modeling time series very well.  
Therefore the estimated ARIMA(1,1,4) model seems to be capturing the 
dependence structure of the difference of electricity consummation time 
series quite well. Figure 4.10 shows the data and forecasting results of ARIMA 
(1,1,4) models for Electricity consumption (MKWH) in 2012. 

 
Figure 4.10: Data and Forecasting results of ARIMA (1,1,4) models for Electricity 

consumption (MKWH) in 2012 

 
The runs test may also be used to assess dependence in error terms via the 
residuals. Applying the test to the residuals from the ARIMA(1,1,4) model 
for the electricity consumption series, we obtain expected runs of 66.86364 
versus observed runs of 74. The corresponding p-value is 0.245, so we do 
not have statistically significant evidence against independence of the error 
terms in this model. In addition, the minimum Root Mean Squares Error 
(RMSE) for ARIMA (1,1,4) model equals 4.9804. 
 

5. Fitting ANN Model for Electricity Consumption Data 
Applying ANN, the percentage of observations for training, which must 
have the same number of observations, 132, as we have in ARIMA for 
training is determined, so we have increased in a series of 12 observations. 
Thus, we have an input consists of 144 observations, 90% for training, and 
10% for comparison in the prediction. The layers may be described as: Input 
layer: accepts the data vector or pattern; Hidden layers: one or more layers. 
Output layer: takes the output from the final hidden layer to produce the 
target values. 
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In choosing the number of layers the following considerations are made. 
Multi-layer networks are harder to train than single layer networks. A two 
layer network (one hidden) can model any decision boundary. Two layer 
networks are most commonly used in pattern recognition. 
The number of output units is determined by the number of output classes. 
The number of inputs is determined by the number of input dimensions. The 
network will not model complex decision boundaries for few hidden units 
and it will have poor generalization for too many number of hidden units  
We started with one hidden layer and end with fifteen layers. The 
performance of the algorithm is influence with choosing different learning 
rates. The algorithm may could become unstable for high learning rate and 
might take longer time to converge.  
R-software is used for fitting ANN model for the time series. Some 
commands and functions with input and output variables have been used. 
The R library ‘neuralnet’ is used to train and build the neural network. The 
nnet function is used to fit neural networks. The  arguments are: size which 
determines the number of units in the hidden layer, and maxit determines the 
maximum number of iterations. The objects are: fitted.values is used for the 
fitted values for the training data and residuals is used to show the residuals 
for the training data (Venables, W. N. and Ripley, B. D. ,2002).  
RMSE is used as stopping criteria in the network. Smaller values of RMSE 
indicate higher accuracy in forecasting. The Neural network result shows 
that the minimum RMSE equals 0.0768 for considering the model with 
fifteen units in the hidden layer, two lags and the learning rate equals to 
0.01.  
 
Table 5.1 shows the actual and forecasting results for Electricity 
consumption (MKWH) in 2011 based on ANN and ARIMA (1,1,4) models. 
It is quite obvious that the ANN forecasts mimic the actual values of the 
electricity consumption. Table 5.2 and shows the forecasting results for 
Electricity consumption (MKWH)  in 2012 based on ANN and ARIMA 
(1,1,4) models. 
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Table 5.1: Actual and Forecasting results of ANN and ARIMA (1,1,4) models for 
Electricity consumption (MKWH) in 2011 

Year (2011) 
Actual data Forecast 

ANN ARIMA  
Jan         96.375285  96.375300 95.939790 
Feb       104.044598  104.044600 99.279110 
Mar         92.962289  92.962300 98.211320 
Apr         99.571429  99.571400 100.520520 
May         96.067993  96.068000 99.861080 
Jun       101.550216  101.550200 100.906510 
Jul       104.943501  104.943500 100.972850 
Aug       105.816438  105.816400 101.601470 
Sep       113.183204  113.183200 101.907180 
Oct       107.519680  107.519700 102.398330 
Nov       120.037919  120.037900 102.782980 
Dec         91.942274  91.942300 103.228800 

 
Table 5.2: Forecasting results of ANN and ARIMA (1,1,4) models for 

Electricity consumption (MKWH) in 2012 

Year (2012) 
Forecast 

ANN ARIMA  
Jan 103.0393 103.6395 
Feb 105.8420 104.0704 
Mar 96.60480 104.4896 
Apr 99.73830 104.9156 
May 101.6009 105.3377 
Jun 97.95320 105.7620 
Jul 98.71340 106.1850 
Aug 99.75960 106.6088 
Sep 98.27490 107.0321 
Oct 98.34590 107.4557 
Nov 98.88840 107.8792 
Dec 98.28100 108.3027 

 
The RMSE for ARIMA and ANN equal 4.9804 and 0.0768, respectively. 
This result shows that RMSE of ANN is 1.54% of RMSE for ARIMA. In 
other words, the RMSE of ARIMA model  is 64.85 times RMSE of the 
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ANN model. This means ANN model for forecasting is much more accurate 
and efficient than the ARIMA forecasting model. 
 

6. Conclusion 
This paper has proposed two efficient approaches forecasting models. In the 
first model multilayer neural network is trained by minimizing RMSE and 
the second model consists of using ARIMA model on real data for 
electricity consumption in Gaza Strip. The results of both models reveal that 
ANNs outperform and offer consistent prediction performance compared to 
ARIMA model and hence preferable as a robust prediction model for 
electricity consumption. 
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Appendix 
 

Figure 4.1: Monthly Consumption of Electricity (MKWH): January 2000–
December 2011 

 
Figure 4.2: Sample ACF for the Electricity Consumption Time Series 
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Figure 4.3: The Difference Series of the Monthly Electricity Consumption 
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Figure 4.4: Sample ACF for Difference of Electricity Consumption Series 
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Figure 4.5: Sample PACF for Difference of Electricity Consumption Series 
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Figure 4.6: Standardized Residuals of the Fitted Model from Electricity 
Consumption ARIMA (1,1,4) Model 
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Figure 4.7: Quantile-Quantile Plot  of the  Residuals of the Fitted Model from 

Electricity Consumption ARIMA (1,1,4) Model 
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 Figure 4.8: Sample ACF of Residuals of the Fitted Model ARIMA(1,1,4) Model 
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Figure 4.9: P-values for the Ljung-Box Test for the Fitted Model 
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