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نولـد في هذا البحث بعض مجموعات الترميز غير الخطية الثنائية ذات الوزن الثابت و ذلك                 :ملخـص   

باسـتخدام الهندسـة الميتاسـمبلكتية ذات الخطوط آلتي عليها نقطتين و ذات الخطوط آلتي عليها اكثر من                  

 . نقطتين و كذلك استخدمنا الباقي عند نقطة لها
 

Abstract: In this paper we generate few families of non-linear binary 
constant-weight codes using the metasymplectic spaces F4,1(q) and its 
residue.   

Introduction  
      The beginning of coding theory goes back to the middle of this century 
with the work of Golay, Hamming and Shannon. Although it has its origins 
in engineering and applied problems, the subject has developed by using 
more mathematical techniques. 
    In recent year there has been an increasing interest in finite spaces and 
important applications to practical topics such as coding theory. 
   Many papers have taken the algebraic concepts for purpose of obtaining 
codes, here we have used the geometric means to construct some families of 
binary non-linear constant-weight codes, at the same time there are many 
geometries that can be used for constructing such kinds of codes. 
In this paper we construct non-linear binary constant-code arising from the 
residue of metasymplectic space.     
Basic geometry Definitions  
A point-line geometry Γ = (P, L) is a pair of sets, P is called the set of 
“points” and L is called the set of “lines”, where members of L are just 
subsets of P.  If p is a point belongs to a line l we say that p lies on l or l 
passes through p or p is incident with l. If p, q are two points on one line l 
we say that p and q are collinear and this is denoted by p ∼ q. Γ = (P, L) is 
called linear (singular) space if each pair of distinct points lie exactly on one 
line.   Γ is called partial (or near) linear if each pair of  points lie on at most 
one line.  A subspace of a point-line geometry Γ = (P, L) is a subset X of 
points together with all lines l in L such that if l has at least two points of X 
then l lies entirely in X.  A path of length k from x0 to xk is a set of k +1 
points x0, x1, x2,  ..., xk , such that xi is collinear with xi+1, i = 1, 2, 3, ..., k-1.   



constant-weight codes using… 

 24

A geodesic is a shortest path between two points.  We define the distance 
function d: p × p → Z by d (x, y) = the length of any geodesic from x to y.    
A subspace X is called convex if it contains all geodesics between any two 
points of X.  The smallest subspace containing a set X is called the subspace 
generated by X and is denoted by 〈X〉. If  p is a point,  p⊥  means all point 
collinear with  p in addition to p itself.  ∆k(p) = {x ∈ p | x is at distance k 
from  p}.  ∆*

k(p) = {x ∈ P | x is of  distance at most k from  p}. Let Γ be 
point-line geometry.   A geometric hyperplane of Γ is a proper subspace 
with the property that every line of Γ meets it in at least one point. A 
hyperplane of Γ is a maximal proper subspace of Γ. 
Some basic space 
Γ = (P, L) is called a gamma space if x⊥ is a subspace for every point x∈ P .  
A polar space is a point-line geometry that satisfies the following 
Buekenhout- Shult axiom: 
(B-S) for each point p not incident with a line l ;  p is collinear with one or 
all points of l. 
If  Γ = (P, L) is a point-line geometry;  Rad(Γ) = { q ∈ p |  p collinear to q 
for all  p∈ p }.  Rank of  Γ is the largest integer n for which there is a chain 
of singular subspaces {Xi}, i = 1, 2, ...n, such that: 
X1 ⊂ X2 ⊂ ... ⊂ Xn, where Xi ≠  Xj , i ≠ j, and if there is no such integer; the 
rank of Γ is infinite. If  Γ is a polar space and Rad(Γ) = ∅, then  Γ is called 
non-degenerate polar space; otherwise Γ  is called degenerate polar space.  
A point-line geometry is called a parapolar space of rank r + 1, r ≥ 2; if it 
satisfies the following conditions: 

(pp1) Γ is a connected gamma space. 
(pp2)  for every line l;  l⊥ is not a singular space. 
(pp3) for every pair of distinct points x, y; x⊥∩y⊥ is either empty, a 
point, or a non-degenerate polar space of rank r. 

A strong parapolar space is a parapolar space in which x⊥∩y⊥ is a polar 
space for every pair of points distinct x, y of distance 2 apart.  
If x, y are two points of a parapolar space; (x, y) is called a special pair if 
x⊥∩y⊥ is just one point, and (x, y) is called a polar pair if x⊥∩y⊥ is a non-
degenerate polar space of rank at least 2. 
Let p be a point in a point-line geometry Γ = (P, L); Residue of Γ at p 
denoted by Γp or Res(p);  is a point-line geometry (Pp, Lp) defined as 
follows: Pp is the set of  all lines containing p; a member of Lp is the set of 
all lines containing  p and contained in a plane (singular space of rank 3). 
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DEFINITION: (Metasymplectic space). A Metasymplectic space is a set P 
in which some subsets called lines, planes, and symplecta are distinguished, 
and satisfy the following axioms: 
(M1) the intersection of distinct symplecta is empty, a point, a line, or a 
plane. 
(M2) A symplecton S together with its “singular spaces”; points, lines, and 
planes contained in S is a polar space of rank 3. 
(M3) Considering the set x* of all symplecta containing a given point x ∈ P, 
and calling lines (resp. Planes) of x* the subset of x* consisting of all 
symplecta of x* containing a plane (resp. a line) through x, we also obtain a 
polar space of rank 3 
Basic Algebraic Definitions and Notations 
Let B be a symmetric or alternate bilinear form defined on a vector space V 
over an arbitrary field F. For (a subspace) W ⊂ V; we set  
W⊥= {u ∈ V :  B(u, v) = 0,  for all vectors v∈V }. V⊥ is called radical of V 
with respect to B.  A bilinear form B on a vector space V is called non-
degenerate iff V⊥ = {0}.  Otherwise B is called degenerate. 
Two forms B1, B2 on V are said to be equivalent if there is a one-to-one and 
onto linear transformation ψ : V→V such that:B1(u, v) = B2(ψ(u), ψ(v)). 
A vector u ∈ V is called an isotropic vector, if B(u, u) = 0,  and a subspace 
W of V  is called totally isotropic (abbreviated TI) subspace of  V  if B(u, 
v) = 0 for all u, v ∈ W.  If a TI subspace W of V is not contained properly 
in any TI subspace of V; W is called maximal totally isotropic (abbreviated 
MTI) subspace of V.  
It can be shown that all the MTI subspaces have the same dimension it is 
called witt index of V and is denoted by ind(V). Two vectors u, v are called 
orthogonal if B(u, v) = 0. 
A 2-dimensional vector space with non-degenerate bilinear form B, in 
which there is an isotropic vector u is called a hyperbolic plane, otherwise it 
is called an anisotropic plane. 
A vector space V of dimension 2n is called hyperbolic if V is endowed with 
a symmetric bilinear form of witt index n, and is called elliptic if witt index 
is n –1. 
The following couple Theorems explains the structure of vector spaces 
endowed with bilinear forms. 
THEOREM.  Let B be a non-degenerate symmetric bilinear form on a vector 
space V of dimension 2n over a finite field F.  Then B is a hyperbolic form 
on V iff V has a basis A, such that V = H1 ⊥ H2 ⊥ … ⊥ Hn, where all Hi are 
hyperbolic planes, i = 1, 2, …, n with ind(V) = n. 
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It shows that all hyperbolic non-degenerate symmetric bilinear forms on a 
certain vector space are equivalent.  To find one we will revert to following 
theorem that determines when the scalar product is hyperbolic. 
THEOREM. Let B be the Euclidean scalar product on a vector space of 
dimension n = 2r over the finite field F of order k. Then if both k and r are 
odd 
(i)   B is a hyperbolic form iff k ≡ 1 (mod 4). 

(ii)    B is an elliptic form iff k ≡ 3 (mod 4). 
Furthermore, if r is even integer, or q is even; B is always a hyperbolic 
form. 
Dual polar spaces 
      From the definition of the metasymplectic space the residue of 
metasymplectic space at any point is dual polar space (C3) 
The dual polar space is the space whose point are maximal singular spaces 
of classical polar space of rank at least two, lines are all totally singular 
subspaces of dimension one less than the dimension of a maximal singular 
space. 
All symplecta of these geometries are generalized quadrangles (Quad) 
LEMMA:[CC] Let Γ= (P, L) be a dual polar space, of rank 3 the following 
holds. 
i) Γ is a gamma space whose lines are maximal cliques 
ii) (P) Holds. 
iii) Each pair of points at mutual distance 2 is contained in a unique quad. 
iv) Each pair of quads has either empty intersection or meets in a line. 
v) For any point x ∉ Q ⇒ x⊥∩Q = ∅ or one point. 
vi) The diameter of Γ is 3. 
Note: This lemma is true for the dual polar space that comes from thick 
polar space of rank 3. 
CLASSICAL EXAMPLES OF FINITE POLAR SPACES: 
Let V be a vector space over a finite field F = GF(q), q is a prime 
power. 
SYMPLECTIC GEOMETRY Wn(q) is the point-line geometry 
 (P, L), where P is the set of all one dimensional subspaces 〈x〉 of V, 
and L is the set of all two dimensional subspaces 〈x, y〉 for which 
B(x, y) = 0, for a symplectic bilinear form B. In this case n is even, 
the polar space is of rank n/2. 
HYPERBOLIC GEOMETRY Ω+

n(q) is the point-line geometry   (P, L), 
where P is the set of all one dimensional subspaces 〈x〉 of V for 
which B(x, x) = 0, and L is the set of all two dimensional subspaces 
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〈x, y〉 for which B(x, y) = 0, for a hyperbolic bilinear form B. In this 
case n is even, the polar space is of rank n/2. 
ELLIPTIC GEOMETRY Ω-

n(q) is the point-line geometry (P, L), 
where P is the set of all one dimensional subspaces 〈x〉 of V for 
which B(x, x) = 0, and L is the set of all two dimensional subspaces 
〈x, y〉 for which B(x, y) = 0, for a elliptic bilinear form B. In this 
case n is even, the polar space is of rank (n/2) - 1. 
ORTHOGONAL GEOMETRY Ωn(q) is the point-line geometry  (P, L), 
where P is the set of all one dimensional subspaces 〈x〉 of V for 
which B(x, x) = 0, and L is the set of all two dimensional subspaces 
〈x, y〉 for which B(x, y) = 0, for an orthogonal bilinear form B. In 
this case n is odd, the polar space is of rank (n-1)/2. 
HERMITIAN GEOMETRY H+

n(q2) is the point-line geometry    (P, L), 
where P is the set of all one dimensional subspaces 〈x〉 of V for 
which B(x, x) = 0, and L is the set of all two dimensional subspaces 
〈x, y〉 for which B(x, y) = 0, for a Hermitian bilinear form B. In this 
case n is even, the polar space is of rank n/2. 
HERMITIAN GEOMETRY H-

n(q2) is the point-line geometry     (P, L), 
where P is the set of all one dimensional subspaces 〈x〉 of V for 
which B(x, x) = 0, and L is the set of all two dimensional subspaces 
〈x, y〉 for which B(x, y) = 0, for a Hermitian bilinear form B. In this 
case n is odd, the polar space is of rank (n-1)/2. 
THEOREM : [Th] The number of points of the finite classical polar spaces 
are given by the following formulae: 
⏐W2n(q)⏐= (q2n- 1) / (q – 1), 
⏐Ω(2n + 1, q)⏐= (q2n – 1) / (q – 1), 
⏐Ω+(2n, q)⏐= (q2n + 1) (qn – 1) / (q – 1), 
⏐Ω-(2n, q)⏐= (qn-1 - 1) (qn + 1) / (q – 1), 
⏐H-(2n +1, q2)⏐= (q2n+1 + 1) (q2n+1 - 1) / (q2 – 1), 
⏐H+(2n, q2)⏐= (q2n - 1) (qn + 1) / (q2 – 1), 
THEOREM: [Th] The numbers of maximal totally isotropic subspaces or 
maximal singular subspaces of the finite classical polar spaces are given by 
the following: 
⏐W2n(q)⏐= (q + 1)(q2 + 1)……….(q(n+1)/2 +1), 
⏐Ω(2n + 1, q)⏐= (q +1)(q2 +1)……(qn +1) 
⏐Ω+(2n, q)⏐= 2(q + 1) (q2 – 1) …….(qn + 1), 
⏐Ω-(2n, q)⏐= (q2 + 1) (q3 + 1) …….(q2n+1 + 1), 
⏐H-(2n +1, q2)⏐= (q3 + 1) (q5 + 1) …… (q2n+1 + 1), 
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⏐H+(2n, q2)⏐= (q + 1) (q3 + 1) …… (q2n+1 + 1), 
THEOREM: [Th] Let V be a vector space equipped with a bilinear form 
then the number of totally isotropic k-subspaces is the following: 
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     Now the table below lists the number of point, quad and the numbers of 
points in each quad in dual polar space of rank 3. 

Type  # of points # of quad # of points in each quads 
W6(q) (q+1)(q2+1)(q3+ 1) (q6 - 1) / (q – 1) (q4 - 1) / (q – 1) 
Ω(7, q) (q +1)(q2+1)(q3+ 1) (q6 - 1) / (q – 1) (q4 - 1) / (q – 1) 
Ω+(6, q) 2(q +1)(q2+1)(q3+ 1) (q2+ 1)(q3-1) / (q – 1) (q+ 1)(q2-1) / (q – 1) 
Ω-(6, q) (q2+1)(q3+1)(q4+ 1) (q2- 1)(q3+1) / (q – 1) (q- 1)(q2+1) / (q – 1) 
H-(7, q2) (q3+1)(q5+1)(q7+ 1) (q7+1)(q7-1) / (q2– 1) (q5+1)(q5-1) / (q2 – 1) 
H+ (6, q2) (q+1)(q3+1)(q5+ 1) (q6 - 1)(q6 +1) / (q2 – 1) (q4 - 1)(q4 +1) / (q2 – 1) 

TABLE 1 
CONSTRUCTION OF THE CODES 
    In this section we shall construct the non- linear binary constant-weight 
codes that are arising from the metasymplectic space and its residue; the 
dual polar space C3,3(q) i.e. Ω(7, q) which comes from the orthogonal polar 
space.  First we will introduce coding theory terminology. 
 

DEFINITION: Let A = {a1, a2, a3, …} be a finite set, called a code alphabet, 
and let An be the set of all strings of length n over A. Then any nonempty 
subset C of An is called a code. Members of C are called  codewords.  If C ⊂ 
An contains M codewords, then C is said to have length n and size M and 
written (n, M)-code. 
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DEFINITION: Let x and y be two strings of the same length, over the same 
alphabet, the Hamming distance d(x, y) between x and y is the number of 
positions in which x and y differ. If d = minimum {d (x, y): x, y ∈C, x ≠ y}; 
d is called the minimum distance of C, in this case we say that C is (n, M, 
d)-code. 
   We are concerned mainly on codes over finite fields, so, we can define the 
following: 
DEFINITION: The weight wt(x) of a word x ∈ C is the number of non-zero 
positions in x 
DEFINITION: If C is a linear vector subspace of Fn; C is called a linear code 
and if the dimension of C is k we say that C is [n, k, d]-code. If all 
codewords in C have the same Hamming weight w, then C is called a 
constant-weight code and we say that C is [n, M, d, w]-code. 
The incidence matrix is a matrix whose columns are labeled by points of a 
certain geometry and whose rows are labeled by certain sets of subspaces, 
the position corresponding to the intersection of the column labeled p and 
the row labeled S will be 1 if the point p is incident with the subspace S, and 
it will be 0 if the point p is not incident with the subspace S. In this paper we 
will use three incidence matrices; one for the dual polar space whose 
columns are labeled by the points of the dual polar space and whose rows 
are labeled by the quads in the dual polar space and will be called the dual 
point-quad incidence matrix, the second is the matrix whose columns are 
labeled by the points of the thin metasymplectic space and whose rows are 
labeled by the symplecta in the metasymplectic space and will be called the 
thin point-symp incidence matrix, the third is the same as the second for 
the thick metasymplectic space and will called the thick point-symp 
incidence matrix. 
 

THEOREM 
(a) The rows of dual point-quads incidence matrix represent an (n, M, d, 
w)-non-linear binary constant-weight code of parameters:  
n = (q +1)(q2+1)(q3+ 1),  
M = (q6 - 1)/(q – 1),  
d = 2(q4 - 1) /(q – 1)- 2(q+1),  
w = (q4 - 1) /(q – 1).  
(b) The columns of the of dual point-quads incidence matrix form a 
constant weight code of parameters: 
n = (q6 - 1) / (q – 1) 
M = (q +1)(q2+1)(q3+ 1) 
d = 2(q3 - 1) / (q – 1) - 2×(q+1) 
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w = (q3 - 1) / (q – 1) 
Proof. (a) Let G be the dual point-quads incidence matrix. All quads have 
the same cardinality, it follows that rows of G have the same weight. The 
weight of each row is the number of points in the quad corresponding to the 
polar space Ω(7, q) thus by table 1, w = (q4 - 1) /(q – 1);.  
  Two rows of G have 1 in jth column if the point pj is incident with both 
quad that corresponds to both rows, this means that the point is in the 
intersection of both quad. By Lemma 4.1.1, two quads either intersect in a 
line or they are disjoint. It follows that the corresponding two rows differ in 
⏐Q1⏐+⏐Q2⏐or ⏐Q1⏐+⏐Q2⏐- 2⏐Q1∩Q2⏐positions. The least of the two 
numbers is when the two quad intersect in a line, where the line has q + 1 
points, it follows that:  d = 2(q4 – 1) /(q – 1) – 2(q +1). The number of rows 
of G is the number of distinct quad that is, by the table 1, M = (q6 - 1) /(q – 
1). The number of columns of G is the number of distinct points in the dual 
polar space, that is by table 1, n = (q +1)(q2+1)(q3+ 1). 
(b) One row has 1 in two positions if the two points corresponding to the 
two columns lie in the symplecton corresponding to the given row. Since 
two points are either of distance 1, 2, or 3. Points of distance 3 from each 
other never lie in a common symplecton. Thus two columns corresponding 
to two points of distance 3 have no 1 in common. Since dual polar space is a 
strong parapolar space, then two points of distance 2 lie exactly in one 
symplecton. It follows that two columns that corresponding to two points of 
distance 2 have exactly one 1 in common. Two collinear points lie exactly 
in q + 1 symplecta . Every column has number of 1’s equal the number of 
symplecta containing the point. Since the residue of a point in the dual polar 
space is a projective plane then the number symplecta containing one point 
is (q3 - 1) / (q – 1). Thus the weight of these codewords are w=(q3-1) / (q–1).  
It follows that we have the following constant weight code. 
For example, let q = 2 then the rows of the dual point-quad incidence matrix 
form a constant-weight code with parameters n = 135, M = 63, d = 24 and  
w = 15.  
It means that this code corrects 11 errors and detects 23 errors. 
The columns of the dual point-quad incidence matrix form a constant-
weight code with parameters n = 63, M =135, d = 8 and w = 7.  
It means that this code corrects 3 errors and detects 7 errors. 
Thin metasymplectic space 
The thin F4,1 geometry is the 1 - shadow space of thin F4 geometry, it is the 
point - line geometry whose points are objects of type 1 and in which two 
points are collinear whenever they are incident to a common object of type 
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2. We will now present the collinearity graph of the thin F4,1 geometry as the 
graph in the figure below.  
 The 1 - cliques, 2 - cliques, 3 - cliques and octahedral in this graph are 
objects of type 1, 2, 3 and 4 respectively and two objects are incident 
whenever one of them is contained in the other. 
 
 
 
 
 
 
 
 

The Coxeter graphs of F4,1 
The thin metasymplectic space has 24 points, and 24 symplecta. symplecta 
has 6 points. Two symplecta either disjoint or intersect in 2 points. Every 
point lie in 6 symplecta. It follows that the rows or the columns of the point-
symp incidence matrix forms the constant weight code with parameters: 
n = 24, M = 24, d = 6, w = 6. 

Point   
     

Symp 
  

∞ 1 2 3 4 5 6 7 8 a b c d e f 8' 7' 6' 5' 4' 3' 2' 1' ∞' 

S1 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
S2 1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
S3 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
S4 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
S5 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
S6 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
S7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 
S8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 
S9 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 
S10 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 
S11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 
S12    0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 

   S13 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 
S14 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 
S15 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 
S16 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 
S17 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 
S18 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 
S19 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 
S20 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 
S21 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 
S22 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 
S23 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 
S24 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 

TABLE 2 
Thin point-symp incidence matrix 
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Thick metasymplectic space. 
As we have seen in the last arguments, similarly, in the thick case the 
number of points is the same as the number of symplecta. Two symplecta 
are either disjoint or intersect in a plane. Therefore we have the following 
result: 
THEOREM. (a)The rows of the thick point-symp incidence matrix 
form a constant-weight code of parameters: 
n  = M = (q2 + q + 1) (q3 + 1) (q4 + 1) (q5 + 1) 
d = = 2(q6 - 1) /(q – 1) - 2(q2+q+1) 
w = (q6 - 1) / (q – 1).  
(b) The columns of the incidence matrix of the thick metasymplectic 
space forms a constant weight code of parameters: 
n  = M = (q2 + q + 1) (q3 + 1) (q4 + 1) (q5 + 1) 
d = 2(q6 - 1) /(q – 1) -2(q2 + q + 1) 
w = (q6 - 1) / (q – 1). 
Proof.  (a) The numbers n = M = (q2 + q + 1) (q3 + 1) (q4 + 1) (q5 + 1) is 
clear since the number of columns equal the number of rows. The weight w 
is the number of points in each symplecton, that is w = (q6 - 1) /(q – 1). 
The Hamming distance of two rows is |S1| + |S2| - 2 |S1∩ S2|, that is either 
|S1| + |S2| if the symplecta are disjoint or  |S1| + |S2| - 2 |plane|, the minimum 
of these two is  |S1| + |S2| - 2 |line|, so d = 2(q6 - 1) /(q – 1) - 2(q2+q+1). 
(b) n = M = (q2 + q + 1) (q3 + 1) (q4 + 1) (q5 + 1) is clear since the number 
of columns equal the number of rows. w is the number of symplecta 
containing one point, so it is the number of quads in the dual polar space 
that is, by table 1, w = (q6 - 1) /(q – 1). 
To calculate d we have to take 4 cases: 

1. If p1, p2 are collinear points. Then the number of symplecta 
containing both is the the number of symplecta containing the 
whole line containing them. Since the residue of the geometry at a 
line is a projective plane then the number of symplecta containing 
the line is (q2 + q + 1), it follows that in this case the Hamming 
distance is 2(q6 - 1) /(q – 1) – 2(q2 + q + 1). 
2. If p1, p2 are of distance two and they are a special pair then 
there is no common symplecton. Then the number of symplecta 
containing both is 0, it follows that in this case the Hamming 
distance is 2(q6 - 1) /(q – 1). 
3. If p1, p2 are of distance two and they are a polar pair then there 
is exactly one common symplecton. Then the number of 
symplecta containing both is 1, it follows that in this case the 
Hamming distance is 2(q6 - 1) /(q – 1) - 2. 
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4. If p1, p2 are of distance three, then there is no common 
symplecton. Then the number of symplecta containing both is 0, 
it follows that in this case the Hamming distance is 2(q6 - 1) /(q – 
1). 
This means that the minimal of these distances is: 

2(q6 - 1) /(q – 1) – 2(q2 + q + 1). 
What is good about this family of codes is that they are easy to decode.  
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