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Abstract

Let x be an infinite cardinal. Let G = @ _,_ G, where G, is a nontrivial group.

a<k
Now let G be the Stone-Cech compactification of G and let H = () _, {clsc{z €
G\ {e} : minsupp(z) > a}. Then we will show that H contains no nontrivial
finite group. Moreover for the set of natural number we show that every maximal
group in the smallest ideal of (8N, +) contains 2¢ discrete copies of (Z,+) the

closures of any two of which intersect only at the identity. We also show that the

same conclusion applies to copies of the free group on two generators.
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Introduction

Compactification theory is of great importance in topology and functional analy-
sis. This is due to the fundamental role of compact spaces in these two branches
of mathematics. Many properties of a topological space are a lot easier to deduce
if the space is a compact Hausdorff space. Given a space X it is probably not
compact and hence it is difficult to handle. Then we must look for a compact
Hausdorff space Y, which is very similar to X. We can then use results in Y
and translate them back to the original space X. For any topological space X,
a compact Hausdorff space Y is called a compactification of X, if there is an
embedding ¢ of X into Y such that ¢(X) is dense in Y. In this work we will
study a very special compactification, independently introduced during the year
1937 by M. H. Stone and E. Cech. This compactification is called the Stone-Cech
compactification of X and is denoted by SX. We take the points of 53X to be
the ultrafilters on X. In SN there are 2° minimal right ideals and 2° minimal left
ideals, and consequently 2¢ maximal groups in the smallest ideal.

N. Hindman and D. saturass [6] show that every maximal group in the smallest
ideal of (BN, +) contains 2¢ discrete copies of (Z,+) the closures of any two of
which intersect only at the identity. They also show that the same conclusion
applies to copies of the free group on two generators. Also, N. Hindman and J.
Pym [8] show that the structural group of K(SN) contains as a subgroup the
free group on 2¢ generators. This raised the question of whether any nontrivial
finite group exists in SN. The question was solved in the negative by Y. Zelenyuk
[16]. In fact, it was shown that if X is a countable torsion-free group, then SX

contains no nontrivial finite group (see also [2, Section 7.1]) . I. Protasov [2]



generalized this result by characterizing the finite groups in X, where X is an
arbitrary countable group. Every finite group in X has the form Hp for some
finite subgroup H of X and some idempotent p in §X which commutes with all
the elements of H. However, nothing has yet been obtained in the uncountable
case. Recently, Y. Zelenyuk [17] studied this Result and gave some answers of it
when X = @,7Z, where X is discrete semigroup and « an infinite cardinal . Also
he show that the smallest ideal of 3X is not closed.

This thesis consists of four chapters.

Chapter 1 contains 2 sections, in section 1 we present a brief summary of the
notations for abstract algebra that we use and in section 2 we give a basic infor-
mation for topological space which will be used in the remainder of the thesis.
Chapter 2 is devided into 3 sections, in section 1 we give some remarks on Boolean
algebra and the relation between it and stone space. In section 2 we study stone-
Cech compactifiction. In section 3 we discuss compactification of discrete space
Chapter 3 also contains 3 sections .In Section 1, we consider the relation between
subsemigroups of GG and left invariant topologies on G. In particular, we give a
sufficient condition for a subsemigroup of G to be the ultrafilter semigroup of a
regular left invariant topology. In Section 2, we study local homomorphisms of
left topological groups. They induce homomorphisms of ultrafilter semigroups.
We show that local homomorphisms enjoy a remarkable property of projectivity
type. In Section 3, using results of Sections 2 and 3, we show that if x is infinte
cardinal and G = &G, where G, is nontrivial group and o < x then H contains
no nontrivial finite group . Finally Chapter 4 contains 2 sections. In Section 1
we show that there are 2¢ discrete copies of Z in each of the maximal groups in
the smallest ideal, and that any two of these meet only in the identity. In Section
3 we show that the same results holds for the free group on 2 generators. Since
the free group on 2 generators contains copies of Z, the results of Section 2 are a

corollary of those of Section 3.



Chapter 1

Preliminaries

In this chapter, we give a basic information which will be used in the remainder

of the thesis.

1.1 Algebra

Definition 1.1.1. [4] A semigroup is a pair (S, *) where S is a nonempty set and

% is a binary associative operation on S.

Formally a binary operation on S is a function * :S xS — S and the operation
is associative if and only if (z xy) *x z = x % (y x z) for all x,y, and z in S.

we say S is closed under x if x xy € S whenever z,y € S.
Example 1.1.2. [/] Each of the following is a semigroup.

(a) The set of natural numbers (N) under addition or multiplication is a semi-

group.
(b) The set of real numbers (R) under addition or multiplication is a semigroup.
(c) (S,*) where S is a nonempty set and x xy =y for all x,y € S
(d) (S,*) where S is a nonempty set and x xy = x for all x,y € S.

(e) (N,V) where x Vy = max{x,y}.



The semigroups of Example 1.1.2 (¢) and (d) are called respectively right zero

and left zero semigroups .

Definition 1.1.3. [4] Let S be a semigroup,
(a) S is commutative if and only if zy = yz for all z,y € S.
(b) The center of S'is {z € S : for all y € S, zy = ya}.
(c) Given z € S, the function \, : S — S is defined by \,(y) = zy.
(d) Given x € S, the function p, : S — S is defined by p,(y) = yz.
(e) L(S)={ sz € S}.
(f) R(S) ={pz -z €S}

Definition 1.1.4. [4] Let S be a semigroup

(a) An element x € S is called left (respectively, right) cancelable if for all

y,z € S, and zy = xz, (respectively, yxr = zz) implies y = z.

(b) If each element x € S is left ( respectively, right) cancelable, then S is called
left (respectively, right) cancellative.

(e) If S is both left cancellative and right cancellative we say S is cancellative .
Example 1.1.5. [18]

(a) The set of natural number under addition is cancellative semigroup.

(b) A left zero semigroup is right cancellative but not left cancellative.

(c) A right zero semigroup is left cancellative but not right cancellative.

(d) Let S (respectively, M, ) be the set of all square matrices of order n with real
entries (respectively, complex entries). Then under matriz multiplication,
S is semigroup. Let A be any element in S. If A is nonsingular, then A is
both left cancellable and right cancellable. If A is singular, then A is neither

left cancellable nor right cancellable.



Remark 1.1.6. [4] Let S be a semigroup. Then (L(S),0) and (R(S),0o) form

semigroups, where o is the operation of composite functions.
Definition 1.1.7. [4] Let S be a semigroup. Then
(a) an element z € S is an idempotent if zz =z

(b) the set of all idempotents in S is denoted by E(S); that is, E(S) = {z €
S xx=x},

Example 1.1.8. (a) The set of idempotents of the semigroup (N, V) is E(N) =
N.

(b) The set of idempotents of the left zero semigroup is E(S) = S.
(¢) The only idempotent in (N,.) is 1

Definition 1.1.9. A group (G,*) is a nonempty set G together with a binary

operation % on G such that the following conditions hold:
(a) Associativity: For all a,b,c € G, we have a* (b c¢) = (a *b) * c.

(b) Identity: G contains an element e (called the identity) such that a x e =

exa=a for all a € G.

(c) Inverses: For each a € G there exusts b € G (called an inverse of a) such

that a x b = b* a = e. We will denote b by a™!.
The order of group G is the number of elements in G.
Definition 1.1.10. [4] Let S be a semigroup,and 7" C S. Then we say

(a) T is a subsemigroup of S if it is a semigroup under the restriction of the

operation of S.

(b) T is a subgroup of S if S is a group, and T is a group under the restriction
of the operation of S.

Given subsets A and B of a semigroup S, by AB we of course mean {ab : a € A

and b € B}



Definition 1.1.11. Let G be a group, and 7' subgroup of GG. Then
(a) T is called a normal subgroup of G, if aT' = Ta for any a € G.

(b) if T is normal in G, then the set G/T = {aT : a € G} is a group under the
operations (aT")(bT") = (ab)T. This group is called the quotient group of G
by T.

Definition 1.1.12. Let ¢ be a function from a set G' to a set S. Then

(a) ¢ is called one to one or monomorphism, if for every aj,as € G, ¢(a;) =

©(az) implies a; = as.

(b) ¢ is said to be onto or surjective, if for every b in S, there is at least one a

in G such that ¢(a) = b.

(c¢) If G and S are groups, then ¢ is called a homomorphism from G to S if it
presrves the group operation; that is, p(xy) = p(x)e(y), for all x,y € A.

(d) ¢ is called an isomorphism from G to S if it is one to one, onto, and a

homorphism.

(e) If ¢ is a homorphism from G to S, then the kernal of ¢ is the set {z € G :
o(x) = e, where e is the identity of S. The Kernal ¢ is denoted by Kery.

Note that Kery is a normal subgroup of A.

Theorem 1.1.13. First isomorphism Theorem
Let ¢ be a group homomorphism from G to S. Then the function ¢ : G/Kerp —
©(Q) given by Y(gKerp) = ¢(g) is an isomorphism.

Definition 1.1.14. [4] Let S be a semigroup and let L, R, be a nonempty
subsets of S. Then

(a) L is left ideal of S'if SL C L

(b) R is right ideal of S'if RS C R



(c¢) I is an ideal (sometimes, we say two sided ideal) of S if and only if I is

both left ideal and right ideal of S.

Any left (respectively, right) ideal L is a subsemigroup of S since SL C L
(respectively, LS C L.)

Example 1.1.15. [1]
(a) In the semigroup (N,.) the set of all even numbers is an ideal.

(b) In the multiplicative semigroup M, of all complex square matrices of order
n. For a given fized column, Let S be the set of all matrices in which the
entries of the fixed column are equal to zero. Then S is left ideal but not

right if n > 1.

Definition 1.1.16. [4] Let S be a semigroup, L is left ideal of S, and R is right
ideal of S. Then

(a) L is a minimal left (respectively, right) ideal of S if whenever J is left
(respectively, right) ideal of S and J C L, we have J = L.

(b) S is left (respectively, right) simple if and only if S is a minimal left (re-
spectively, right) ideal of S.

(e) S is simple if it is both left simple and right simple .
Note 1.1.17. If S is simple, then the only ideal of S is S itself.

Proof. Let L be an ideal of S such that L C S. Since S is simple then .S is minimal
ideal of S. so, L = 5. m

In a semigroup S, an element z is called a zero element if z xs = s*x 2z = z,

for all s € S.

Example 1.1.18. (a) Semigroups with zero has only one minimal left ( right
- two sided ) ideal of S namely the trivial one {0}

(b) (Z,+) has no minimal ideal .



(¢c) Let S ={a,b,c,d} wherea,b,c, andd are distinct and let S has the following

multiplicative table. Then S is simple but neither left simple nor right simple.

alblcl|d
alalblalb
blal|b|alb
cleld|d|c
dic|d|d]|c

Clearly S is semigroup . Also {a,b} and {c,d} are right ideals of S and
{a,c} and {b,d} are left deals of S.

Lemma 1.1.19. [/ Let S be a semigroup,

(a) suppose Ly and Lo be left ideals of S. Then Ly N Ly is a left ideal of S if
and only if Ly N Ly # ¢.

(b) if v € S, then xS is a right ideal, Sx is a left ideal, and xSz is an ideal.
(c) if L is a left ideal of S and, R is a right ideal of S, then L N R # ¢.
Proof. [4]

(a) Since LN Ly is a left ideal of S then LyN Ly # ¢. Conversely, let L1NLy # ¢,
since L is a left ideal then S(L; N Ly) € SLy C Ly so (L1 N Ly) is a left

ideal.

(b) Since x € S then xS # ¢. Also 2SS C xS so xS is right ideal of S.

In the same way Sz is a left ideal and zSx is an ideal of S .

(c) Suppose z € L and y € R. Then we have that yz € L because L is left ideal
and yxr € R because R is right ideal.

]

Lemma 1.1.20. [4/ Let S be a semigroup, L a left ideal of S, and T a left ideal
of L. Then



(a) for allt € T, Lt is a left ideal of S and Lt CT.

(b) if L is a minimal left ideal of S, then T = L. So minimal left ideals are left

simple.
(c) if T is a minimal left ideal of L, then T is a left ideal of S.
Proof. [4]
(a) S(Lt) = (SL)tC Ltand Lt C LT CT.

(b) Pick any t € T. By (a), Lt is a left ideal of S and Lt CT C L, so Lt = L.
Thus T' = L.

(c) Pick any t € T. By (a), Lt is a left ideal of S, so Lt is a left ideal of L. Since
Lt C T, we have that Lt = T. Therefore, ST = S(Lt) = (SL)t C Lt =T.

]

Of course, the right-left switch of the above lemma is hold. That is; if R is a
right ideal of S and T is a right ideal of S, moreover if either R is minimal in .S

or T is minimal in R, then 7' is right ideal of S.

Lemma 1.1.21. [4] Let S be a semigroup. If I is an ideal on S, and if L is a
manimal left ideal of S, then L C I.

Proof. Since [ is an ideal of S then S(IL) = (SI)L C IL. So IL is a left ideal of
S. Also IL C L because L is a left ideal. But L is minimal, so /L = L. Therefore
L =1L C I because [ is an ideal. O

Theorem 1.1.22. [4] Let S be a semigroup and L a minimal left ideal of S, and
T CS. Then T is a minimal left ideal of S if and only if there is some a € S
such that T = La.

Proof. Suppose that T"is a minimal left ideal of S and pick a € T. Then SLa C La
and La C ST C T so La is a left ideal of S contained in T so La = T.

Conversely, Let a € S such that T' = La. Since SLa C La then La is a left ideal
of S. Assume that B is a left ideal of S and B C La. Let A={s € L: sa € B},

9



then A C L. Since B is non empty then A # ¢. We claim that A is a left ideal
of S, to see this let s € A and pick t € S. Then sa € B. But B is a left ideal so,
tsa € B. since s € L and L is left ideal then ts € L. Hence ts € A. Since L is
minimal and A C L then A = L. Therefore La C B which implies La = B. Since

B was arbitrary then T'= La is a minimal left ideal. O
Corollary 1.1.23. Let S be a semigroup and L a minimal left ideal of S. Then
(a) there is some a € S such that L = La.

(b) if there is a minimal left ideal T of S, then L = Tb = L(ab) for some a and
bin S.

Lemma 1.1.24. [}] Let S be a semigroup and let K be an ideal of S. If K 1is
minimal in {J : J is an ideal of S} and I is an ideal of S, then K C I.

Proof. [4] By Lemma 1.1.15 (¢), KNI # ¢. So we have KN/ is an ideal contained
in K. Hence KNI =K. O

By a bove lemma there is at most one minimal ideal in a semigroup , we called

it the smallest ideal.

Definition 1.1.25. [4] Let S be a semigroup. If the smallest ideal exists in S,
we denote it by K(95) .

Theorem 1.1.26. [}/ Let S be a semigroup with a minimal left ideal, then K(S)
exists and K(S) = J{L : L is a minimal left ideal of S}.

Proof. [4] Let I = (J{L : L is a minimal left ideal of S}. By Lemma 1.1.21, if
J is any ideal of S, then any minmal left ideal L of S is contained in J. Hence,
I C J, so it is suffices to show that [ is an ideal of S. We have that I # ¢ by
assumption, so pick z € I and s € S. Take a minimal left ideal L of S such that
x € L. Then sx € L C I. Also by Theorem 1.1.22, Ls is a minimal left ideal of S
so LS C I while zs € Ls. O

There are many subgroups do not have a smallest ideal. For example (N, +)

and (N, .)

10



Lemma 1.1.27. [4] Let S be a semigroup.

(a) Let L be a left ideal of S. Then L is minimal if and only if Lx = L for every

z € L.

(b) Let I be an ideal of S. Then I is the smallest ideal if and only if IxI = I

for every x € I.

Proof.  (a) If L is minimal and = € L, then Lz is a left ideal of S and Lz C L
so Lx = L. Now assume Lx = L for every x € L and let J be any ideal of
S with J C L. Pickx € J. Then L=Lz CLJCJCL,SoJ=L.ButJ

was arbitrary then L is minimal.

(b) Let I be the smallest ideal and = € I, then Izl C I. Since Iz is an ideal
of S and I is the smallest ideal so I C Iz].
Conversely, suppose that Ixl = I for every x € I and let J be any ideal of
S with J C 1. Pick x € J Then I = Iz C IJI C J because J is an ideal
so I C J. Thus J = I, But J was arbitrary then [ is minimal.
O

Theorem 1.1.28. [/] Let S be a semigroup. If L is a minimal left ideal of S and
R is a right ideal of S, then K(S) = LR.

Proof. First we will show that LR is an ideal of S. Since L # ¢ and R # ¢ then
LR # ¢. L is a left ideal of S, so SL C L, and SLR C LR. Also, since R is a
right ideal of S then RS C R so, LRS C LR. Hence LR is an ideal of S.

We will use Lemma 1.1.27 to show that K(S) = LR so, let x € LR. Since L is
a left ideal then SL C L which implies SLRxL C LRxL. Since LRx C S then
LRxL C SL C L So, LRxL is a left ideal of S which is contained in L .But L is
minimal so LRxL = L and hence LRxLR = LR. So, from Lemma 1.1.27 part b
we get K(S) = LR. O

Corollary 1.1.29. Let S be a semigroup. If L is left ideal of S and R is a
minimal a right ideal of S, then K(S) = LR.

11



Proof. As in a bove theorem LR is an ideal. let € LR. Since R is a right ideal
then RS C R which implies RzLRS C RxLR. Since tLR C S then RxLR C
RS C R So, RxLR is a right ideal of S which is contained in R .But R is minimal
so ReLR = R and hence LRxLR = LR. So, from Lemma 1.1.27 part b we get
K(S) = LR. O

Theorem 1.1.30. /4] Let S be a semigroup and assume there is a minimal left
ideal of S which has an idempotent . Then every minimal left ideal has an idem-

potent.
Proof. see [4, Theorem 1.56]. ]

Theorem 1.1.31. [4] Let S be a semigroup and assume there is a minimal left
ideal of S which has an idempotent. Then there is a minimal right ideal of S

which has an idempotent.
Proof. see [4, Lemma 1.57]. O

Lemma 1.1.32. [}/ Let S be a semigroup and assume there is a minimal left ideal

of S which has an idempotent. Then all minimal left ideal of S are isomorphic.
Proof. see [4, Lemma 1.62]. O

Definition 1.1.33. A group G is called cyclic if there exists an element g in G

such that G =< g > = {¢"|n is an integer} and g is called a generator of the

group.

If G is a cyclic group of order n then every subgroup of G is cyclic. Moreover,
the order of any subgroup of G is a divisor of n and for each positive divisor k& of

n the group G has exactly one subgroup of order k.

Examples 1.1.34. (a) The group Z under addition is infinite cyclic group gen-
erated by 1 and —1.

(b) The set Z,, under addition mod n is finite cyclic group of order n.

12



Definition 1.1.35. [18] Let f : X — Y and ¢ : Y — X be two functions such
that the composition fog :Y — Y is the identity function on Y, then g is a

coretraction .

In other words g has left inverse function.

1.2 Topology

In this section, we give a basic information for topological space which will be
used in the remainder of the thesis. See [14] and [12] for more details and any

unfamiliar topological facts encountered in this section.

Definition 1.2.1. A topological space is a set X together with 7, a collection of

subsets of X, satisfying the following axioms:
(a) ¢ and X are in 7.
(b) The union of any members of 7 is also in 7.
(c¢) The intersection of two sets in 7 is also in 7.

Using induction, the intersection of any finite members of 7 is also in 7.
Usually, a topological space is denoted by (X, 7) or simply by X (if there is
no confusion), where 7 is a topology on X.

The elements of 7 are called open sets, and their complements in X are called
closed sets. A set U may be open, closed, both open and closed, or neither
open nor closed. A set that is both closed and open is called a clopen set.
The intersection of any finite number of open sets is open, but in general the
intersection of any number of open sets need not be open. Dually, the union of
any finite number of closed sets is closed, but in general the union of any number

of closed sets need not be closed.

Examples 1.2.2. (a) For any set X the collection T = {¢, X} forms a topology
called the trivial topology. The collection T = P(X) the power set of X
forms a topology called the discrete topology.

13



(b) Let X ={1,2,3,4}. The collection T = {¢p,{2},{1,2},{2,3},{1,2,3},{1,2,3,4}}
of siz subsets of X forms another topology on X. item [(c)] Let X =7, the
set of integers, and T the collection of finite subsets of the integers together
with Z itself, Then T is not a topology, since the union of all singleton sets

not including zero is not in T.

Definition 1.2.3. If (X, 7) is a topological space and A C X, the collection

7, ={GNA:G e 7} forms a topology on A, called the relative topology on A.
The topological space (A, 7,) is called a subspace of X

Definition 1.2.4. If X is a topological space and x € X . A neighborhood of x

is a set U which contains an open set V' containing x.

Definition 1.2.5. A base B for a topological space X with a topology 7 is a
collection of open sets in 7 such that every open set in 7 can be written as a

union of elements of B. We say that the base generates the topology 7.

Example 1.2.6. For any X, the collection {{z} : v € X} is a base for the

discrete topology on X.

Proposition 1.2.7. Let (X, 1) be a topological space. A family B of open subsets
of X is a basis for T if and only if for any open set U and any x € U, there is
A € B such that x € A C U.

Definition 1.2.8. Let A be a subset of topological Space X. A point z € X is
called a limit point of A if every open set U containing x contains a point of A

different from z.

Definition 1.2.9. If X is a topological space and F C X, the closure of E in X

is the set

E= - 1s closed an - .
E=({KCX|Kisclosedand E C K}

Clearly E is closed set. In fact it is the smallest closed set containing FE.
Moreover, A is closed set if and only if A = A. We denotes A’ to be the set of all
limit points of X. So we have that A = AU A’

14



Definition 1.2.10. Let A be a subset of a topological space X. Then A is said
to be dense in X if A = X. Equivalently, A is dense if ANU # ¢ for each U € 7
and U # ¢.

For example, the set of rational numbers Q is a dense subset of R.
In general if A C X then = € A if and only if for any open set U containing x,
we have that U N A # ¢.

Definition 1.2.11. Let (X, 1) and (Y, 72) be topological spaces and f is a func-
tion from X into Y. Then f is said to be continuous function if for each U € 7,

fHU) emn.

Theorem 1.2.12. Suppose Y C Z and f : X — Y. Then f is continuous as a

map from X toY if and only if it is continuous as a map from X to Z.

Definition 1.2.13. Let X and Y be a topological spaces. A function f from X
to Y is called a homeomorphism if f is one to one, onto, continuous, and f~! is

also continuous. In this case, we say X and Y are homeomorphic.

Example 1.2.14. The open interval (a,b) in R is homeomorphic to (0,1). One
homeomorphism being f(x) = (x —a)/(b—a).

Definition 1.2.15. A topological space X is T} space if and only if whenever x
and y are distinct points in X. there is two open sets U and V such that x € U,
y¢UandyeV,z ¢V

If X is T space, then each singleton set in X is closed.

Example 1.2.16. Let X be an infinite set. Definet ={AC X :A=¢ or X\A
is finite} (called a cofinite topology). Then X is Ty topological space.

Definition 1.2.17. A topological space X is said to be Hausdorff or (T, space)
if for any pair of distinct points a, b in X there exists open sets U and V' such

that a c U, beVand UNV = ¢.

Let X be an infinite set with cofinite topology then X is Hausdroff space.

Moreover, any Hausdroff Space is T but the converse not true .
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Definition 1.2.18. Let A be a subset of a topological space X. Then A is said
to be compact if for every set I and every family of open sets O,, a € I, such
that A C U,erO,, there exist a finite subfamily O, Oqs, ..., O, such that A C
Oa1 UOgo U ... UOqyp,.

Example 1.2.19. The unit interval [0,1] is compact Hausdroff Space.
Theorem 1.2.20. (a) Every closed subset of a compact space is compact.
(b) A compact subset of Hausdroff space is closed.

Corollary 1.2.21. A set A in a compact Hausdroff space is closed if and only if

1t 18 compact.

Corollary 1.2.22. Any finite subset of compact Hausdroff space is closed and

compact.

Definition 1.2.23. A topological space X is said to be disconnected if it is the

union of two disjoint nonempty open sets. Otherwise, X is said to be connected.

A subset A of a topological space X is said to be connected if it is connected

as a subspace.

Definition 1.2.24. [15] A space X is said to be totally disconnected if the clopen
sets separate the points of X. That is; for any two distinct points of X, there is a

clopen set in X containing one of these two points and not containing the other.

Equivalently, a topological space X is totally disconnected space if the only

connected subsets of X are only the singleton sets.
Examples 1.2.25. [18]
(1) Every discrete spaces is totally disconnected.

(2) The rational numbers with respect to the relative topology induced by the
FEuclidean topology of R is totally disconnected.

(3) The irrational numbers with respect to the relative topology induced by the
FEuclidean topology of R is totally disconnected.
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Theorem 1.2.26. A compact Hausdorff space is totally disconnected if and only

if the clopen sets form a base for open sets.

Proof. suppose that X is a compact Hausdorff space which is totally disconnected,
and let A be any open set in X. If A = ¢ trivial case, so let A # ¢ and pick
x € A. Since X is totally disconnected space, then for all y € A€ there is a clopen
set U, containing y but not z. Thus A° C Uy6 4c Uy which is an open cover of
A°. Since X is a compact Hausdroff space, and A€ is closed, then A¢ is compact.
Pick finite subfamily of {U,, : y € A°} such that A° C |J;_, Uy,. Since x ¢ U, for
all y € A°, then = ¢ U, Uy,. Thus = € (U;_, Uy,)° = i=, Uy, where it is clopen
supset. Also, (_; Uy, € A. To show this, let t € (\;_, Uy, then ¢ ¢ (J_, U, so
t ¢ A° which give t € A.

Conversely, suppose that the clopen sets form a base for open open sets, and let
x, y be two distinct points of X. Since X is compact, then {z} is a closed set
so {x}° is open set containing y, thus from assumption there exists a clopen set

containing y and not containing x. So, X is totally disconnected. O

Theorem 1.2.27. A one to one continuous map from a compact space X onto

a Hausdroff space Y is a homeomorphism.

Definition 1.2.28. (1) A topological space X is called a regular space if and
only if whenever A is closed in X and z ¢ A, then there are disjoint open

sets U and V with z € U and A C V. A T; regular space is T3 space.

(2) A topological space X is called a completely regqular space if for any closed
set F' and any point x that does not belong to F', there is a continuous
function f from X to the real line R such that f(z) is 0 and f(y) is 1 for
every y in F'. That is; X is completely regular if  and F' can be separated

by a continuous function, where F' is closed and x ¢ F.

X is a Tychonoff space, or 73 space if and only if it is both completely regular

and Hausdorfl .
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Example 1.2.29. [18]

(1) A trivial space is always Ty, and a non-trivial space is reqular but not Tj

space.

(2) The real line R is completely reqular space under the Euclidean topology. In
fact R is Tychonoff.

(8) Any compact Hausdorff space is completely reqular, and hence a Tychonoff.
Theorem 1.2.30. The following are equivalent for a topological space X
(a) X is regular.

(b) if U is open in X and x € U ,then there is an open set V' containing x such

that V. C U.

Remark 1.2.31. Any subspace of a completely regular space is completely reg-

ular.
Definition 1.2.32. [4]

(a) A right topological semigroup is a triple (S, -, 7) where (S, -) is a semigroup,

(S,7) is a topological space, and for all x € S, p, : S — S is continuous.

(b) A left topological semigroup is a triple (S, -, 7) where (5, -) is a semigroup,

(S,7) is a topological space , and for all z € S, A\, : S — S is continuous.
(c) A semitopological semigroup is a right and left topological semigroup.

(d) A topological semigroup is a triple (S, -, 7) where (S, -) is a semigroup, (5, 7)

is a topological space, and - : § x § — S is continuous.

(e) A topological group is a triple (S,-,7) such that (S,-) is a group, (S, 7) is
a topological space, - : S x § — § is continuous, and In : S — S is

continuous (where In(z) = z71).
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Each topological group is a topological semigroup, each topological semigroup
is a semitopological semigroup and each semitopological semigroup is both a left
and right topological semigroup.

Any semigroup with the discrete topology which is not group provides an example

of a topological semigroup which is not a topological group.

Definition 1.2.33. [4] Let S be a right topological semigroup. The topological
center of S is the set A(S) = {x € S : A\, is continuous }.

Thus, a right topological semigroup S is a semitopological semigroup if and
only if A(S) = S. Clearly any topological group is a semitopological semigroup.
Note that the center of a right topological semigroup in algebraic sense is con-

tained in its topological center.

Theorem 1.2.34. [}/ Let S be a compact right topological semigroup. Then
(a) E(S) # ¢.

(b) Every left ideal of S contains a minimal Left ideal, minimal left ideals are

closed, and each minimal left ideal has an idempotent.

(c) S has a smallest ideal K(S) which is the union of all minimal left ideals of
S and also the union of all minimal right ideals of S. FEach of {Se : e €
E(K(9))}, {eS:ee€ E(K(9))}, and {eSe : e € E(K(S))} are partitions
of K(9).

Theorem 1.2.35. [/] The intersection of a minimal right ideal and a minimal

left ideal is a group, and all these groups are isomorphic.

Remark 1.2.36. [4] A compact cancellative right topological semigroup is a

group.

Definition 1.2.37. A space X is called extremally disconnected if the closure
of an open set is open or, equivalently, if the closures of disjoint open sets are
disjoint.

Every discrete space is extremally disconnected.
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Definition 1.2.38. A topological space X is called zero-dimensional if it has a

base of clopen sets.

Definition 1.2.39. Let 2 be uncountable well ordered set with largest element
wy with the property that if a € Q with v < wy then {5 € Q|5 < «ais countable}.
The elements of €2 are ordinals with w, being the first uncountable ordinal and

the set Qg = Q — {w;} is the set of countable ordinals.

Definition 1.2.40. If o and 3 are ordinals and a < (3, then we say « is prede-

cessor of B and (3 is successor of «

0 is called an immediate successor of a if 3 is the smallest ordinal larger than
.

Every ordinal a has immediate successor ordinal often denoted by o + 1.

Definition 1.2.41. A limit ordinal is an ordinal number which have predecessor
without immediate predecessor. It is equal to the supremum of all the ordinals

below it, but is not zero.
Definition 1.2.42. A family P of nonempty sets is a partition of X if

(a) The union of the elements of P is equal to X. (The elements of P are said

to cover X.)

(b) The intersection of any two distinct elements of P is empty. (We say the

elements of P are pairwise disjoint.)

If X is a space and if each set in P is closed, then we say P is a closed partition

of X.
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Chapter 2

Compactification of discrete

Space

In this chapter we are mainly interested in the compactifications of a discrete
space. If S is a finite discrete space then S itself is a compactification of S and
hence we consider infinite discrete spaces only. Throughout this chapter S denotes
an infinite discrete space. In the following we construct several compactifications

of S.

2.1 Stone representation Theorem

Definition 2.1.1. [13] A Boolean algebra is a non empty set A together with
two binary operations V and A (on A), a unary operation ' and two distinguished

elements 0 and 1, satisfying the following axioms: For p,q,7 € A,

(1) 0 =1 =0
(2) pAO=0 pV1l=1
(3) pAl=p pVO=p
(4) pAp =0 pVp =1
(5) () =p
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6) pADP=p pVp=p

(7) (pAa) =p' vV (pva) =pAg

(8) pAg=qAp pVqg=qVp

9) pA(gnr)=(gAp)Ar pVvigvr)=(qgvp)Vr

(10) pA(gVr)=({@AQV(pAT) pVgnr)=(pVar(pVr)

Examples 2.1.2. (1) [13]The class of all subsets of a set X is a Boolean al-
gebra under the operations of V =union, N\ =intersection and’' = comple-

mentation , the 0 element is the empty set and the 1 element is the set X

itself.
(2) A Boolean algebra with only one element is called a trivial Boolean algebra

(3) [18]The simplest non trivial Boolean algebra has only two elements 0, 1 ,

ANl 0|1 V|01
a| 0|1

and is defined by the rules: | 0 | 0| 0 0101l 1
a | 1|0

11011 11111

(4) [18] The set of all subsets of X that are either finite or cofinite is a Boolean

algebra under the same operation of part 1.

Definition 2.1.3. [13] A Boolean subalgebra of a Boolean algebra A is a subset
B of A such that B, together with the 0 and 1 elements is a Boolean algebra

under the same operation of A. The algebra A is called a (Boolean) extension of

B.

Example 2.1.4. [13] The set of all subsets of X that are either finite or cofinite
is a Boolean subalgebra of the set of all subsets of X that are either countable or

cocountable of X.

Every Boolean subalgebra B has the element 1 because if p € B then PV P’ =
1€ B. Also p AP’ =0 € B so, the unit and zero elements in B is the same as

the unit and zero in A.
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[13]To be a Boolean subalgebra it is not enough to be a subset that is a Boolean
algebra in its own right, however natural the Boolean operations may appear.
The Boolean operations of a subalgebra, by definition, must be the restrictions
of the Boolean operations of the whole algebra.

To illustrate the situation, let Y be a non-empty subset of a set X. Both P(X)
and P(Y) are Boolean algebras in a natural way and clearly every element of
P(Y) is an element of P(X). Since, however, the unit of P(X) is X, whereas
the unit of P(Y) is Y, it is not true that P(Y") is a Boolean subalgebra of P(X).
Another reason why it is not true is, of course, that complementation in P(Y") is

not the restriction of complementation in P(X).

Definition 2.1.5. [13] Let A be a non-empty collection of subsets of X that is
closed under intersection, union, and complement. That is; if P and () are in A,
then so are PN Q, PUQ, and P’. Then A is a Boolean algebra which is called a
field of sets.

Since A contains at least one element, say P then P’ € A it follows that
PNP =¢ e A, so A contains ¢ and X. Therefore, in a field of sets, the zero

element is ¢ and the 1 element is X.

Examples 2.1.6. (1) [18] The set of all subsets of X that are either finite or
cofinite is a field of sets.

(2) If X is topological space, then the set CO(X) of all clopen subsets of X is
a field of sets.

Definition 2.1.7. [13] A Boolean homomorphism is a mapping f from a Boolean

algebra B to, a Boolean algebra A such that :

(1) flong) = f(p) A flq)
(2) fleva) =fpV )
(3) f) = (f(p)

whenever p and q are in B.
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we shall usually write f(p)" instead of (f(p))’.

Definition 2.1.8. [13] The kernel of a homomorphism f from a Boolean algebra
B to a Boolean algebra A is the set of elements in B that map to 0 in A. In
symbols, the kernel of f is defined by

Ker(f) = £1({0}) = {p € B+ f(p) =0},
Note that if Ker(f) = {0}, then f is one to one.

Example 2.1.9. [13] consider a field B of subsets of a set X , and let xo be an
arbitrary point of X. For each set P in B, let

1, zo€ P
O, SCO¢P

f(P) =

To prove that the mapping f is a 2-valued homomorphism on B, we will verify
identities (1),(2) and (3).
The definition of f, and the definitions of the Boolean operations in a field of sets

and in the Boolean algebra consists only the elements {0, 1}, justify the following

equivalences:
f(PNQ)=1  ifandonlyif o€ PNQ,
if andonlyif g€ Pandmz € Q,
if andonlyif — f(P)=1land f(Q) =1,
if andonlyif — f(P)AF(Q)=1;
So,
f(PNQ)=f(P)A f(Q).
Similarly,

f(PUQ)=1 if and only if x0 € PUQ,
if and only if xg € Porzy € Q,

if and only if f(P)=1or f(Q) =1,
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if andonlyif — f(P)VF(Q)=1;

So,
f(PUQ) = f(P)V [(Q).
Similarly,
f(PY=1  ifandonlyif o€ P

if andonlyif — wo¢ P,

if andonlyif — f(P)=0,

if andonlyif — f(P) =1;
So,

the kernal of f is
Ker(f)={p€ B: f(p) =0}

Ker(f)={p€ B:xy¢ P}

Definition 2.1.10. [13] We define a binary relation < in a Boolean algebra by
p<gqorq>pif pAq=p, orequivalently, pV ¢ = q. In this case we say that p

is below q, or q is above p .

As a specail case, and for sets, wesay P < Qif PNQ =P (PUQ = Q) in
the case when P C Q.

The set A of all subelements of p,, consists of all elements p with p < po,

Definition 2.1.11. [13] A (Boolean) filter in a Boolean algebra B is a subset N
of B such that

(1) 1e N
(2) if pe N and g € N, then pAg e N
(3) ifpe N and g € B, then pV g € N.

Condition (1) can be replaced by the condition that N be non-empty. Con-
dition (3) can be replaced by (4) if p € N and p < ¢, then ¢ € N
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Definition 2.1.12. [13] The filter generated by a subset E of a Boolean algebra
B is defined to be the intersection of the filters that include E. (There is always
one such filter, namely B.) In other words, it is the smallest filter that includes

E . A filter N is principal if it is generated by a single element p. In this case
N={¢eB:p<q}

Definition 2.1.13. [13] A mazimal filter, or an ultrafilter-as it is often called-is

a proper filter that is not properly included in any other proper filter.
Remark 2.1.14. [19]
(a) Every filter of Boolean algebra A is a subset of some ultrafilter.

(b) If A is a Boolean algebra then any ultrafilter of A consists exactly one of

the elements a and a’ for each element a of A.

Theorem 2.1.15. [18] Let B denots a Boolean algebra and F an ultrafiter in it,
then for all a,b € B if aV b € F then either a € F orb € F.

Proof. Let B be a Boolean algebra and F' a proper filter in it. Suppose to contrary
that a Vb € F, while a ¢ F and b ¢ F. Then by above remark o' € F and i/ € F,
and hence (a/ ANV) € F = (aVb) € F contradiction. O

Theorem 2.1.16. [11] Let U be a Boolean algebra and let S(U) be the set of all
ultrafilters on U. For each x € U put \(x) = {p € S(U) : x € p}. If a topology T
is assigned to S(U) by letting {\(x) : x € U} be an open base for T then (S(U),T)
is a compact Hausdorff totally disconnected space. The set S(U), topologized as

above, is called the Stone space of U.

Theorem 2.1.17. [18/Stone representation Theorem
Every boolean algebra is isomorphic to the algebra of clopen supset of its stone

space

Proof. Let f:U — P(S(U)) defined by f(x) = A(z). To prove that f is homo-
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morphism, let z and y be elements in U then :

flavy) = MazVvy)={peSU):zVyep}
= {peSWU):zepVvyecp}
= {peSU):zeptu{pesSU):yep}
= M) UAy)

The first and last equalities use the definition of f, the second uses the Theorem

2.1.15, the third uses the definition of union. Now,

flany) = Mazny)={peSU):zNyep}
= {peSWU):zepnryep}
= {peSWU):zeptn{pesSU):yep}
= A@) NA(y)

Similarly,

f@) = Ma')={peSU):2" €p}
= {peSWU):x¢p}
= {peSU):zep}

In order to prove that f is one-to-one, it suffices to show that its ker(f) = {0}.
If x # 0, then there is a principal ultrafilter p generated by x such that x € p;
consequently, the set A(xz) = f(x) is not empty. Thus for each nonzero element x
in U, AM(z) # ¢ so z can not be in the ker(f).
Next, we will show that the the sets {\(z) : * € U} is the only clopen sets in
S(U). First we will show that A(x) is closed for any x € U by proving that
S(U)\ AMx) = A(2'), so let p e S(U) \ A(x) then = ¢ p, thus 2’ € p = p € A(2),
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conversely let p € \(2') so 2’ € p then = ¢ p so p € S(U) \ AM(z). Hence \(x) is
closed.
To show that A(z) is the only clopen sets, suppose that C' is any clopen subset
of S(U). First from (1), A(z V y) = Az) U A(y).
Let

B={\z):2e€U and \x) C C}.

Since C'is open and {A(z) : x € U} is an open base for 7 then for all p € C there
is xg € U such that p € A(zy) € C so, C C UA(zp). Thus B is an open cover of
C. Since C'is closed, it is compact since 7 is compact Hausdroff space. So pick a
finite subfamily F of B such that C' C U,exrA(z) so, C' = Ayer(Va) from (1). Set
y=Vx,z € F,s0 C = Ay). Thus if C is clopen subset of S(U) then C' = \(z)
for some x € U. So, f(zr) = A(x), and hence f is onto. So The mapping f is
an isomorphism from U onto the Boolean algebra of open-and-closed subsets of

S(U). O

It is well known that a Stone space S(B) is compact Hausdorff and totally
disconnected and that any topological space is homeomorphic to S(B) for some

suitable Boolean algebra B. This result is known as the Stone-Duality

Definition 2.1.18. [18] A complete Boolean algebra is a Boolean algebra in which

every subset has a supremum (least upper bound).
Examples 2.1.19. [18]
(1) The class of all subsets of a set X is a complete Boolean algebra.

(2) The set of all subsets of X that are either finite or cofinite is incomplete

Boolean algebra.

Completion of Boolean algebra [10]
A Boolean subalgebra L contained in a Boolean algebra M is said to be generates
M if every element of M is supremum of elements of L.
A homomorphism f of Boolean algebras from B to A is said to be complete if it

preserves any suprema which exist. That is; if a family {p;} of elements in B has
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a supremum P, then the family {f(p;)} has f(p) as a supremum.

A complemetion of L is a pair (M, e) where M is a complete Boolean algebra
and e is a complete monomorphism of L into M and e(L) generates M .We will
usually think of L as a subalgebra of M.

The stone representation Theorem show that every Boolean algebra has a com-

pletion since L is isomorphic to the algebra of clopen supset of its stone space.

2.2 Stone-Cech compactification

Recall that by an embedding of a topological space X into a topological space

Z, we mean a function ¢ : X — Z which defines a homeomorphism from X onto

¢[X].

Definition 2.2.1. [15] For any topological space X, a compact Hausdorff space
Y is called a compactification of X, if there is an embedding ¢ of X into Y such
that ¢(X) is dense in Y.

We shall identify X with the subspace ¢(X) of Y.

Definition 2.2.2. [15] If Y\ X is a singleton set then Y is called a one-point
compactification of X. If Y\ X is a finite (countable or infinite) set, then Y is

called a finite (countable or infinite respectively) compactification of X.

Example 2.2.3. Suppose the real line R under the Euclidean topology. Define

the homeomorphism ¢ : R — (0,1) by p(z) = T Oince (0,1) is dense in the

compact Hausdorff space [0,1], then [0,1] is a compactification of R.

Theorem 2.2.4. A space X has a compactification if and only if it is completely

reqular.

Definition 2.2.5. [4] let X be a completely regular topological space. A Stone-
Cech compactification of X is a pair (¢, Z) such that:

(a) Z is a compact Hausdroff space .
(b) ¢ is an embedding of X into Z.
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(¢) ¢[X]is a dense in Z, and

(d) given any compact space Y and any continuous function f : X — Y there

exists a continuous function g : 7 — Y such that go ¢ = f.

Proposition 2.2.6. [}/ Let X be a completely reqular topological space and (¢, Z)
and (1, W) be Stone-Cech compactification of X. Then there is a homeomorphism
v:Z — W such that yop =1

Proof. Since (1, W) is a Stone-Cech compactification of X then 7, is an embedding
of X into W, hence 7 : X — 7(X) is continuous. By Theorem 1.2.12 7: X — W
is continuous. But W is compact and (¢, Z) is a Stone-Cech compactification of

X then there exists a continuous function v : Z — W such that yo ¢ = 7. O]

The a bove remark can be viewed as saying:” The Stone-Cech compactification
of X is unique up to homoemorphism”
Throughout this section S will be denote an infinite discrete space. Recall that
the power set P(S) of all subsets of S together with the usual set operations is a
Boolean algebra. As a special case a filter & on a set S is a nonempty collection

of nonempty subsets S with the following properties:
(a) if Fl, F2 € U then F1 ﬂFQ € Z/{,
(b) if F el and FF C E, then E € U.

A proper filter which is maximal among the class of proper filters is called an

ultrafilter of B.

Remark 2.2.7. Let S be a infinite discrete space. We will denote S(S) (the set
of all ultrafilters of S) by 4S and for any A C S we will denote A(A) by A, so
A={U e pBS|Ac U} and {A| A C S} forms a base for a topology on 5.

Theorem 2.2.8. [/ Let S be a discrete space, a € S, and e : S — (S defined by
ela) ={AC S:ac A} then (e, 3S) is a Stone-Cech compactification of S.

Remark 2.2.9. For each a € S, e(a) is the principal ultrafilter corresponding
to a. For any A C S, e(A) = [Jelal for all a € A. The principal ultrafilters are
being identified with the points of S, so S C 35 and we denote S* = 3(5) \ S.
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Note that from Theorem 2.2.8 we conclude that S is dense in 4S5 and given
any compact space Y and any function f : S — Y there exists a continuous

function g : 3S — Y such that g = f.

Theorem 2.2.10. [}/ Let S be a infinite discrete space and let A, B C S.

—

(a) (AUB) = AUB.

(b) (ANB) = AnB.

Definition 2.2.11. [4] Let D be a discrete space, let Y be a compact space,
and let f: D — Y. Then fis the continuous function from GD to Y such that

fio=1r

In the following theorem we will show that for any discrete semigroup S, there
is a natural extension of the operation (-) of S to 4S making 55 a compact right

topological semigroup with S contained in its topological center.

Theorem 2.2.12. [}/ Let S be a discrete space and let - be a binary operation
defined on S. Then there is a unique extension binary operation x : 38 x 35S — BS

satisfying the following three conditions:
(a) for every s,t €S, s*xt=s-1,
(b) for each q € BS the function p, : 5S — (BS is continuous where p,(p) = p*q,
(c) foreach s € S, the function \s : BS — (S is continuous, where A\s(q) = s*q.

We will denote the operation on 35 by the same symbol as that used for the

operation on S.

Definition 2.2.13. [4] Let S be a discrete space, Y a topological space, p € 35,
andy € Y. If Aecpand f: A — Y, then we shall write lim,_,f(a) = y if and
only if for every neighborhood V' of y, there is neighborhood U of p in 35S such
that f[ANU] C V.
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The statements in the following proposition follow immediately from the fact

that A is continuous for every s € S and p, is continuous for every ¢ € 35.
Proposition 2.2.14. [4] Let - be a binary operation on a discrete space S.
(a) If s€ S and q € 3S, then s-q = limy_4s -t
(b) If p,q € BS , then p- q= lims_,(lim;_4s - t)
Where s,t denote elements of S

Theorem 2.2.15. [}/ Let (S,.) be a semigroup . Then the extended operation on

BS is associative.

Proof. Let p,q,r € 8. From Proposition 2.2.14 we consider lim,_,, lim;_,, lim._,.(a.b).c,

where a,b and ¢ denote elements of S .We have:

Clliirllo }jl_rg £i£r%(a.b).c = (lllgzly })Er;(a.b).r (because Ay p is continuous)
= }Ligzl)(a.q).r (because p, o A\, is continuous)
= (p.q).r (because p, o p, is continuous).
Also:
leiggl; }gr; (ljl_rg a.(b.c) = ilir]lj })13; a.(b.r) (because N, o Ny is continuous)
= Clgl}) a.(q.r) (because A\, o p, is continuous).
= p.(q.r) (because p,., is continuous).
Since S is associative then (a.b).c = a.(b.c) so (p.q).r = p.(q.r). O

As a consequence of Theorems 2.2.8, 2.2.12 and 2.2.15 we see that (5 is a

compact right topological semigroup.
Remark 2.2.16. Let (S,.) be a semigroup .If p,q € S* then p.q € S*

Proof. Since p,q € S* then p = lim;_,t and ¢ = lim,_,s where s,? elements in

S so

limlim ts = lim(lim ¢s) = lim tq (because \; is continuous)
t—p s—q t—p s—q t—p

= lim pq(t) = pq(lim t) = ps(p) =pg  (because p, is continuous)
—p —p
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Definition 2.2.17. Let (.5,.) be a semigroup, let A C .S and let s € S. Then we
define

(a) sTA={ye S:s-ye A}
(a) Ast={yeS:y-se A}
Theorem 2.2.18. [}] Let (S,.) be a semigroup, let A C S. Then
(a) For any s € S and q € 3S , A€ s-q if and only if sT*A € q.
(b) For any p, q € BS, A € p.q if and only if {s € S : s 1A € q} € p.

Definition 2.2.19. [4] Let S be any set and let U be a filter on S . A family A is
a filter base for U if and only if A C U and for each B € U there is some A € A
such that A C B .

Remark 2.2.20. [17] Let (S,.) be a semigroup and let p and ¢ € S then the
ultrafilter pg has a base of subsets | J{zB, : * € A}, where A € p and B, € q.

Proof. Let A be a family of subsets | J{zB, : © € A}. First we will prove that
A Cpqg,solet He Athen H=|J{zB, : z € A} for some A € p and B, € q.
Since A € p then A # ¢, so let zg € A then {z¢B,, : z0 € A} C H so,
B,, C v5'H. Since B,, € q and ¢ is an ultrafilter, then 2;'H € ¢. which implies
that zp € {t € S:t7'H € q}. Hence AC {t € S:t"'H € q} € p since A € p.
From Theorem 2.2.18 H € pq.

Seconed we will prove that for any B € pq there is some H € A such that
H C B. Let B € pq then from Theorem 2.2.18, {t € S : t!B € ¢} € p. Let
A={teS:t'Beq}, then A€ p, and for all X € A we have 27 'B € ¢. Put
B, =xz"'Bandlet H=J{zB, :xz € A}. Clearly H C B . O

2.3 Compactifications of Discrete Spaces

Remark 2.3.1. [15]
Let S be infinite discrete space and let B be a Boolean subalgebra of P(.5)
then a proper filter U of B is maximal if and only if B\ U is closed under finite

unions.
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Proof. Let U be an ultrafiter and let {A;, As, ..., A,,} be subsets of B\ U then
A € U for all © = 1,2,..,n, so by definition of filter, N ; Af € U. Since U is
an ultrafilter, (N7, A$)¢ ¢ U. Hence (NP, AS)® = U, A; € B\ U .Conversely |,
suppose that B\ U is closed under finite unions and assume by contrary that U
is not maximal then there exist a ultrafilter D of B such that U C D then choose
A e D\U so A° ¢ D which implies A° ¢ U. Since B \ U is closed under finite
unions then S = AU A¢ € B\ U. Since U is filter then U # ¢. choose A € U, then
A C S. From definition of filter S € U contradiction. O

Let By be the Boolean subalgebra of all subset of S that are either finite or

cofinite.

Theorem 2.3.2. [3] Let S be an infinite discrete space. Then (Bq is the one-
point compactification of S and FP(S) is the Stone-Cech compactification of S.

In the following we shall prove that §B is a compactification of S, for any

Boolean subalgebra B of P(S) containing By.

Theorem 2.3.3. [15] Let S be an infinite discrete pace and B a Boolean subal-
gebra of P(S) containing Bo. Then the Stone space B is a compactification of
S in which S is open.

Proof. 1t is well known that B is a compact Hausdorff space. Now define a map
a:S — B by ald = {A € Bld € A}. Since B containing By then {d} € B
for all d € S. First we will show «(d) is an ultrafilter, since {d} € a(d) then
a(d) # ¢. Moreover if Ay, Ay € a(d) then d € A; N Ay, so Ay N Ay € a(d).
Now let A; € «a(d) so for any set Ay such that A; C Ay we have d € A; C Ay
which implies that «(d) is filter. To prove that it is maximal let {A1, ..., A,,} be
in B\ a(d)sod ¢ A; forall i =1,...,n. Hence d ¢ U A;. Therefore B\ a(d) is
closed under finite union and so «(d) is maximal.

Also, for any d € S, a(d) = @, since any ultrafilter of B containing {d} must be
equal a(d), To see this let U be an ultrafilter containing {d} and let A € a(d) then
d € A so {d} C A which impliese that A € U from the definition of ultrafilter.
Hence a(d) C U. Since a(d) is ultrafilter, a(d) = U.
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To prove « is one-one, let dy, dy € S such that a(d;) = a(ds), since B containing
By then {d;} is in B and so {d;} € a(d;) = a(ds2) so dy € {d;} which implies
dy = ds.

Since S is discrete, we have a : S — (B is a continuous map. Now we shall prove
that « is an embedding of S into §B. For any d € S, since {a(d)} = «(S5) N {/c-l\}
and hence each singleton set is open in «(S). This proves that «(S) is discrete
and hence « is an embedding of S into fB. Next, if Ais anon empty basic open
set in 3B, then A # ¢ and if a € A, then a(a) € a(S) N A and so a(S) N A # 6.
Therefore «(S) is dense in GB. Thus B is a compactification of S. Also since
{a(d)} = {/cﬁ, This proves that «(S) is open in 5B. O

Remark 2.3.4. [15] If A and B are clopen subsets of topological space X and
D is a dense subset of X then:

(a) AND=¢=A=¢
(b ANDCBND< ACB.
(c) AND=BND<« A=B.

Proof. (a) By contrapositive, since A is open and D is a dense subset then

A # ¢if and only if AN D # ¢.

(b) Suppose that AND C BN D andlet z € A .
Case(1): If z € D then

reANDCBND=zeB

Case(2): If x ¢ D. Suppose to contrary that = ¢ B then € B which is
open set. so AN B¢ is open set containing x. Since D is a dense subset of
X then (ANB)\{z}ND #¢. Pickye ANB°NDCBNDNB*=¢
contradiction. Hence z € B .

Conversely if A C Bthen ANDC BND .
(¢) By using part (b) we have
AND=BND< ANDCBND and BNDCAND
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S ACBand BC A& A=B.

[]

Now we have the following, which is a converse of Theorem 2.3.3, in the
sense that any totally disconnected compactification of S must necessarily be
(homeomorphic to) the Spectrum of a Boolean subalgebra of P(S) containing

By.

Theorem 2.3.5. [15] A compactification of an infinite discrete space S is totally

disconnected if and only if it 1s homeomorphic to BB for some Boolean subalgebra

B of P(S) containing By.

Proof. Let Y be a compactification of S. Suppose that Y is totally disconnected.
Consider B={ANS | Ais a clopen subset of Y }. It is not difficult to show that
B is a Boolean subalgebra of P(S). Since S is discrete then for any d € S, {d}
is open in S. But Y is totally disconnected hence there is a clopen subset A of
Y such that d = AN S. This implies that {d} € B for all d € S and hence all
finite subsets of S must be in B, to prove this let A be finite subset of .S then
A ={dy,...,d,} where d; € S for all i = 1,...,n. Since {d} € B for all d € S then
for each {d;} € A there exist clopen subset A; such that {d;} = A; N S. Hence

A=Ur {d;} =U(A,NS) = (UL 4)NS € B.

Also if U € S, and S\ U is finite, then S\U € Bso S\U = ANS for some clopen
subset A of Y. Hence U = (S\U)*NS =(ANS)*NS=(AUS)NS =A°NS.
Since A€ is clopen subset of Y, U € B. So that B contains By. Now we shall prove
that Y = B. Define f : Y — (B by

fly) ={ANS|Ais clopen in Y andy € A}.

Firstly, we will show that f(y) is an ultrafilter of B. First f(y) # ¢ since S =
YNSe fy). Now let A and B € f(y) then A=A, NS and B =B; NS where
Ay and By are clopen subsets of Y and y € A; N B;. Hence

ANB=(ANS)N(B1NS)=(ANB)NS € f(y).
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If A€ f(y), then A = A;NS where A; is clopen subset of Y and y € A;. [f A C C
for some C' € B, then A;NS C C = C1NS where (Y is clopen subset of Y, so from
Remark 2.3.4 y € A; C C} so C € f(y). Therefore f(y) is a filter. To show that
it is maximal, Let {4, Ay, ..., A,} € B\ f(y). Since A; € Bfor alli = 1,...,n.
then A, = C; NS where C; is clopen subset of Y. Moreover since A; ¢ f(y),
then y ¢ C;. Thus y ¢ U, A;. Suppose by contrary that U, A; € f(y), then
U, A; = C' NS for some clopen subset C of Y and y € C. But

Ur A =UL (CinS) = (UL, Cy) N S.

Hence (U,C;) NS =CNS. Sinse (UP,C;) and C are clopen subsets of Y and
S is dense, then from Remark 2.3.4 (U ,C;) = C which is contradiction sinse
y € C and y ¢ U ,C;. Therefore B\ f(y) is closed under finite union so it is
maximal.

Secondly, we will show that f is an injection. Let y; and y, € Y such that
f(y1) = f(y2). Since Y is totally disconnected, if y; # yo, then there is a clopen
subset A of Y such that A contains one of y; or y, and not contains the other,
say y1 € A. Then AN D € f(y1) = f(y2) so yo € A which is contradiction. Thus
Y1 = Yo

Thiredly, to prove that f is onto, let U be any ultrafilter of B. Then U satisfies
the finite intersection property and so is {A | A is clopen in Y and AN S € U}.
By the compactness of Y, there exists y € Y such that, for any clopen set A in Y’
such that AN S € U we have y € A, otherwise suppose that for all y € Y there
exists clopen set A, in Y such that A,NS € Uandy ¢ A,soY =J(4,)°. ButY
is compact so Y = [J;_; (A4,,)¢ where {(Ay,), (Ay,)¢, ..., (Ay,)¢} is finite subfamily
from {(A,)°:y € Y} and A, NS € U. Thus ¢ = N4, = N,(4, NS)
contradiction since U satisfies the finite intersection property .

From this, it follows that U C f(y) and hence U = f(y) because U is an ultrafilter.
Therefore f is a surjection too.

Finally, for any AN S € B, where A is clopen in Y.
fHANS) ={yeY|fly) € AnS}
={yeY[AnS e fly)}
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={yeYlye A} =4

This implies that f is continuous and hence f is a homeomorphism (since both
Y and B are compact Hausdorff spaces).
The converse follows from Theorem 2.3.3

O

Definition 2.3.6. [13] The (direct) product of two Boolean algebras B and C
is the algebra
A=BC={(p,q) :p€e B and qe C}

with the operations :
(1) (p,q) A (r,8) = (pAT,g A s).
(2) (pq) V (r,8) = (pVr,qVs).
3) (r.q) =@, 4q).

where p A r and p V r are the operation of p and r in B, while ¢ A s and ¢V s are
the operation of ¢ and s in C. Also, p’ and ¢’ are the complements of p and ¢ in

B and C respectively.

The product A is a Boolean algebra with zero (0,0) and unit (1, 1).
In the case when B and C are fields of subsets of disjoint sets Y and Z respectively,
their product A represents itself naturally as a field of subsets of the union X =
Y U Z. Every subset S of X can be written in one and only one way as a union

S =PUQ of asubset P of Y and a subset () of Z. Indeed,
P=5SnY and RQ=SNZ.
Furthermore, if S; and Sy are subsets of X, say
S1 =P U@, and So = Py U Qo,
then
(1) SiNSy=(PANP)U(QNQ).
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(2) S1USs = (PLUBR)N(QUQ).
(3) Si=PUQ;.

The representation f of the product A as a field of subsets of X maps each pair
(P,Q) in A to the union P U Q. Since every subset of X can be written in only
one way as such a union, the mapping f is one-to-one. Almost everything that

has been said can be generalized.

Definition 2.3.7. [13] The (direct) product of a family {A,;};c; of Boolean al-
gebras is the algebra

A=A
The universe of the product consists of the functions p with domain I such that
p(i) - or p; as we shall usually write is an element of A; for each index i. The

operation of p and ¢ in A are the functions p A ¢ and p V q on I defined by

(PANQ)i=DpiNg and (pVQ)i=piV

while the complement of p is the function p’ on I defined by
()i = pi-

The right sides of these equations are computed in the Boolean algebra A; for
each i. Under these operations, the product A is a Boolean algebra with zero and

unit of the product are the functions 0 and 1 on I defined by
0=0; and 1 =15,

where the elements on the right sides of these equations are the zero and unit of
A; for each i. The algebras A; are the factors of the product A.

If each member of a family {A;} of Boolean algebras is a field of subsets of a
set X;, and if the sets X; are mutually disjoint, then the product A = [] 4; is
naturally represented as a field of subsets of the union X = | J X; via the mapping
f that assigns to each element P in A the subset | J Pi of X. (Recall that P is a
function on I, and P; is a subset of X for each i.) Since every subset of X can

be written in only one way as such a union, the mapping f is one-to-one.
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Theorem 2.3.8. [15] Let Y be a compactification of an infinite discrete space S
and Y \ S finite. Then the following hold.

(1) Y is totally disconnected.

(2) There exist pair-wise disjoint infinite sets Sy, S, ..., Sp of S such that S =

U S; and Y s the topological union of the one-point compactifications of

/
S;s.

(3) Let B; = {X C S; | X or S;\ X is finite}. Then By X By X ... X B,, is

isomorphic to the Boolean algebra of all clopen subsets of Y and hence Y 1is

homeomorphic to f(By X By X ... X By).

Proof. (1) Let Y\ S = {x1,x9,...,x,}. Since Y is Hausdorff, we can find open

sets Ay, Ay, ..., A, in Y such that z; € A; and A;NA; = ¢ forall i # j....(1).
Since Y\ S is finite and Y is Hausdroff, then Y\ S is closed in Y, and hence
S is open in Y. Also, since S is discrete, {d} is open in S and hence in Y,
for all d € S. The class of all singleton sets {d}, d € S, together with the
A;s forms an open cover for Y. Since Y is compact, there exists a finite
subset E of S such that FUA; UA;U...UA, =Y...(2),

Each A;\ F is open in Y because both of A; and E€ are open in Y. Then from
(Dand (2) {E, A1\ E, A\ E, ..., A, \ E'} is a class of open sets in Y which
are pairwise disjoint and cover Y. Therefore, each A4;\ E = (U;A4;\ E)¢ =
N,z (A; \ E)°. So it is closed also. Since each {d} is clopen in Y, it follows
that the points of Y are separated by clopen subsets of Y. Thus Y is totally

disconnected.

There exist pairwise disjoint clopen sets Y7,Y5,...,Y,, in Y such that Y =
Y1UYsU, ,UY, and z; € Y; for each i. (For example, we can take Y, = FUA;
and Y; = A;\ Efori > 1). Put S; =Y;NS .Then S; # ¢. (since S is dense
and Y; is a nonempty open set in Y'). Also, each S; is infinite; otherwise
S;U(Y'\Y;) is a closed set containing S and hence Y = S;U (Y "\ Y;) because
S is dense and Y is smallest closed set containing S. Further since S; C §

for all 7, then U} ;.S; € S. Conversely, let z € S then x € Y because S C Y,
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so z € Y; for some i. Hence x € S; so, S C U ,S;. Therefore S = U ;S;.
Now we will prove that Y; \ S; = {z;}. Clearly z; € Y; \ S;, suppose that
yeY;\S;and y # z;, Since y ¢ S; theny ¢ S soy = z; and j # ¢ so
y €Y, but y € Y;s0Y;NY; # ¢ contradiction. Since Y; is closed in Y, Y]
is compact and hence Y; is the one-point compactification of S;. Thus Y is

the topological union of the one-point compactifications of S;’s.

(3) It is well-known from Theorem 2.3.5 that Y; is homeomorphic to the Stone
space (B;, where

B; ={X C S;|X or S; \ X is finite}.

Further Y = U ,Y; = U ,8B;. To see this let € Y. Then x € Y; for some
unique 7. Since Y; is homeomorphic to the Stone space GB;, there exists
a homoeomorphism g¢; : Y; — (B;. Define F' : Y — U ,((B;) given by
F(z) = ¢;(x). F is homoeomorphism because g; does. Also Ul ,(3(B;) =
B(B; X ... x By). Hence By X ... X B, is isomorphic to the Boolean algebra
of all clopen subsets of Y (by the Stone duality).

0]

So, we proved that any finite compactification of S' is totally disconnected. we
do not know whether finiteness can be dropped in this. However, there are ex-
amples of infinite compactifications, other than the Stone-Cech compactification,

which are totally disconnected. Consider the following example:

Example 2.3.9. [15] Let S = U2, S,,, where each S, is infinite and S, NSy, = ¢
for alln # m. Let

B={ACS| foreach n, either S,NA or S,\ A is finite}.

Then B is a Boolean subalgebra of P(S) containing By because for all A € By
either A is finite or S\ A is finite, but in so U2 S, N A is finite or U2,S, \ A
is finite. Thus for each n S, N A or S, \ A is finite so A € B.

By Theorem 2.3.5, BB is a compactification of S which is totally disconnected. It

can be easily seen that B is an incomplete Boolean algebra and hence B can not be
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isomorphic to P(S) so that, by the Stone duality, 3(B) can not be homeomorphic
to B(P(S)). This says that B(B) is not the Stone-Cech compactification of S.

Further, for each positive integer n, let
U, ={A € B|S, N is infinite}.
First we will prove that U,, is an ultrafilter of B.
(1) Since S, € U, so U, # ¢ . Also ¢ & U, because S, N ¢ = ¢ is finite.

(2) Let Ay and Ay € U, then S, N Ay and S, N Ay are infinite. Since A; € B
and Ay € B then A1 N Ay € B because B is Boolean subalgebra of P(S).
Since S, N Ay and S, N Ay are infinite. Then from definition of B we have
Sp \ A1 and S, \ Ay are finite. So, S, \ A1 N As is finite. But S, is infinite
so S, N A1 N Ay is infinite. Hence Ay N Ay € U,.

(3) If AeU, and A C B then S, N A C S, N B is infinite .

(4) To show that U, is mazimal, it is enough to show that B \ U, is closed
under finite unions. So let {Ay, As, ..., A} € B\ Uy,. Suppose by contrary
that U A; € Uy, then U A; NS, is infinite. Since A; € B for all i, then
either S, N A or S, \ A is finite. If for all i = 1,...,m, A; NS, is finite,
then U™ A; N S, is finite contradiction. So, there is j = 1,...,m such that
A; NS, s infinite which implies A; € U,, contradiction, Therefore U, is an
ultrafilter and U,, € BB.

Let f: S — BB be the usual embedding defined by
f(d)={A e B|de A}

Then as in the proof of Theorem 2.3.3, f(d) is an ultrafilter. Also, U, # f(d) for
alld € S and for all n € N, because S\ {d} € U, but S\ {d} ¢ f(d). Moreover,
for each n we have S,, € U,,. Since S, N S,, = ¢ for all n # m, U, #* U,,. Thus
BB\ f(S) contains infinitely many points. So BB is an infinite compactification
of S.

Finally we will show that each, A € B can be uniquely expressed as A = U A,
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where A,, is in the Boolean algebra B, = {E C S,| either E or S, \ E is finite

} and that B is isomorphic to the product algebra ], By, we will prove this in

three steps:

(1)

(2)

(3)

Step (1): Suppose that A € B and let A, = S, N A. Clearly U, A,, C A.
Conversely; let x € A. Since A C S, then x € S = x € S, for some n.
Thus x € A,, and hence v € U2 | A,,. To show the uniqueness suppose that
A = U2 H,, where H, is in the Boolean algebra B,,. Since A, = S,NA then
A, =85, N (U Hy). =U (S, NHy). So, S,NH, CA,. But H, € B,.
So, H, C S,, which implies S,, " H, = H,,. Hence H, C A,. Suppose that
H, C A,. Then there is x € A, and x ¢ H,. So, v € H,, for some m.
But H,, C A,,. Then x € A,, which implies that A, N A,, # ¢. Hence
Sp NSy, # @, which is a contradiction.

Step (2): Since A € B then S, N A or S, \ A is finite. So A, or S, \ A,
is finite. Since A, C S,, we have that A, C B,,.

Step (3): Since S, NSy, # ¢ then A, N Ay, # ¢. Define f: 1], B, — B
by f(p) = U,—, A, where p, = A, for all n. Now we will show that f is an

isomorphism.

(1) Since every subset of B can be written in only one way as such a union,

then the mapping f is one-to-one.

(2) For all A € B, A = U2, A,, where A, C B,, for each n. Take P €
Hf;l B, such that p, = A, for all n, then f(P)= A Hence f is onto.
(3) Let P and Q € [, By then (PAQ), = P,NQ,). Thus f(PAQ) =
Unti(PAQ)n = Ul Pan@Qn = UL B N ULy @ = f(P)NF(Q).
Similarly, f(PV Q) = U (PV Q) = Uy PaUQn = U2y P U
Unty @n = f(P) U f(Q). Also,
Since (P'); = P/ then f(P') = U2, (P)n = UpZy P = (UpZy B¢ =
f(p)°.
By the Stone duality, BB is homeomorphic to the direct sum of the
spaces BB, n € N.
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Chapter 3

Finite groups in Stone-Cech

compactification

3.1 Ultrafilter semigroups and topologies

In this section all topologies are assumed to satisfy the T) separation axiom.

Definition 3.1.1. [14] A filter p on a topological space X is said to be convergent
to x if and only if for each neighborhood U of z, U € p.

Definition 3.1.2. [4] Let G be a group. A topology 7 on G is left invariant if
for every U € 7 and a € G, aU € 7. Equivalently, 7 is left invariant if for every

a € G, the left shift \, : G — G is continuous in 7.

Thus, left invariant topologies on G are those that make G into a left topo-
logical group.
Note that a left invariant topology is completely determined by the neighborhood
filter at the identity.

Definition 3.1.3. [17] Let G be a group and let 7 be a left invariant topology

on G. The ultrafilter semigroup of 7 is defined as a closed subsemigroup of GG, by

Ult(t) = {p € G* : p converges to the identity e € G in T}.
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Definition 3.1.4. [18] For an infinite family of groups G, for a € I, the direct
sum @ G, consists of the elements (a,) such that a, is the identity element of

G, for all but finitely many «.

For illustrated example let X = @;°, R then the element (1,0,0,0,...) € X
but the element (1,1,1,1,....) ¢ X

Definition 3.1.5. Let x be an infinite cardinal. Suppose for every ordinal o < &,

we have non-trivial group G,. Set G = @, _, G, then

a<k

(a) [7] if e is the identity of G, then for each z € G, we define supp(z) = {a <
KXo # €}

(b) [17] we define a set

H= m {clsc{r € G\ {e} : min supp(x) > a}}.

a<k

(c) [17] let 7o denote the group topology on G with a neighborhood base of

e € G consisting of subgroups
H,={z € G:supp(z) Na=¢}
Where a < k.

Remark 3.1.6. For every z € G =@, _, G, supp(z) is finite.

a<k

Note that the sets H,, contains the identity and all elements such that minsupp(x) >

Lemma 3.1.7. [17] Let k be an infinite cardinal. For every ordinal o < R, let

G be a nontrivial group, let G = €P,,_,. Ga, and let

a<k

H= ﬂ {clsc{r € G\ {e} : min supp(x) > a}}.

a<k

then H = Ult(7)
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Proof. Let S, = {z € G\ {e} : minsupp(z) > a} then H =
that H, = S,U{e}. Let p € Ult(7y) then p converge to e. Pick a < k, so H, € p.

a<cr paSa. Note
Suppose by contrary that p ¢ clzeS,, then there is A € p such that ANS, = 0.
Since AN H, # ¢ then the only element in this intersection is {e}. Thus {e} € p
which implies that p is principal ultrafilter generated by e contradiction since
peG*.

Conversely let p € H and pick H, neighborhood of e. Suppose by contrary that
H, ¢ pthen HS € p. Since p € clgeS, then ]tl\gﬂSa # ¢ which is a contradiction.
O

Lemma 3.1.8. [17] Let G be a group, then the ultrafilter semigroup Ult(T) is a

closed subsemigroup of G*.

Proof. Let S = Ult(r). To see that S is closed, let p € G*\ S. Then p does not
converge to the identity, so there is a neighborhood U of e such that U ¢ p. Put
C=G\U, then C €pso,p¢€ C. Moreover, NS = ¢, otherwise if there exist
q e C'NS then C € q and q converges to e. Thus U € ¢ and C' € ¢ which implies
C' NU # ¢ which is a contradiction.

To see that S is a semigroup, let p,q € S. From Remark 2.2.16, pqg € G*, and so
it suffices to prove that pg converges to e. Let U be an open neighborhood of e.
For every x € U, put V, = 27 'U. Then U = U,e Ve To prove this, let x € U
then x = ex € eV, so U C Uer xV,. On the other hand, for each z € U we
have V, = 27U = {t € G : ot € U} then 2V, = {at € G : a2t € U} C U, so
Usew Ve CU. Since U € pand V, € ¢, U = U,y *Vs € pg. Hence, U € pg. [

Lemma 3.1.9. [17] Let G be a group, then for every nonempty open subset U in
(G, 7), we have U.Ult(r) C U

Proof. Let p € U and q € Ult(r), so U € p and ¢ converge to e. As in the proof
of Lemma 3.1.8, for every x € U, U = |J,; V5. Hence, U € pq and pq € U O

Lemma 3.1.10. [17] If Ult(1) has only one minimal right ideal, then T is ex-

tremally disconnected.
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Proof. Let S = Ult(T). Suppose to the contrary that 7 is not extremally discon-

nected. Then there are two disjoint open subsets U and V' such that
c(U)Nel(V) # ¢.

Also UN S and V N S are disjoint, since if p € (U N S) N (VN S) then U € p
and V € p, so UNV # ¢. Now from Lemma 3.1.9, (17 ns)s C UnNS and
(‘A/ NS)Ss C VNS Thus UNS and V NS are two disjoint right ideals of S. By
duality of Theorem 1.1.26 we have K(S) = R where R is the minimal right ideal.
so K(S) CUNS and K(S) C VNS which contradicts that U NS and VN S are
two disjoint right ideals. O]

Definition 3.1.11. [17] A subsemigroup S of a semigroup T is left saturated in
7 if for every x € T\ S, 2SN S = ¢

Lemma 3.1.12. [17] Let T be a regular left invariant topology on a group G, and
S =Ult(r). Then S* = SU{e} is left saturated in BG.

Proof. Let p € G\ S*. Since S' is closed and p ¢ S, then there is a neighborhood
U of e in 7 with U ¢ p. Since 7 is regular then from Theorem 1.2.30 one may
suppose that U is closed. Let C'= G\ U, then p € 6, C'is open, and NSt = o,
otherwise if ¢ € C' N S! then q converge to e so U € ¢ which contradicts that
qEé. By Lemma 3.1.9, pS? g(?, and so pSt'N St =¢ O]

Definition 3.1.13. [17] Given a filter F on G. Then we define

F={pepG:FCp}

Since each filter is contained in ultrafilter then there ultrafilter p such that

F Cpe Fthen F # 6.
Theorem 3.1.14. [}] Let X be a discrete space :
(a) If F is filter on X, then F is a closed subset of BX.

(b) If S C X and F =NS, then F is a filter on X and F = clS.
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Proof. (a) Let p € 8X \ F, then p # F. Pick B € F\ p. Then X\ B € p
and so, p € X/\\B Thus X/\\B is a neighborhood of p. Now if there is
g€ FNX\ B, then B € F C ¢. Hence B and X \ B will be in ¢ which is

a contradiction.

(b) F is anintersection of filters, so F is a filter. Furthermore, for each p € S
we have F = NS C p. So, we have that S C ]—A", and by (a) c¢fS C F. To see
that F C clS, let p € F and let B € p. Suppose to contrary BNS = o.
ThenforeachqeS,qGX/\\BSOX\BEqandthenX\BE}"Qp
which is a contradiction.

O

From Theorem 3.1.14 we conclude that every nonempty closed subset of G

can be represented in such a form.
Remark 3.1.15. [17]Given a filter F on G, then F = ({A : A € F}.

Proof. Let p € ({{A: A € F}. Then p € A for all A € F which implies that
A e pforal Ae F. Hence F C p, and p € F. Now let p € B(G) such that
F C p, then for all A € F we have A € p. Sop € A for all A € F which implies
that p € {A: A e F}. O

Proposition 3.1.16. [17] Let S be a closed subsemigroup of a group G. Suppose
that S* = S U {e} is left saturated in BG and that S has a finite left ideal. Then
there is a regular left invariant topology T on G with Ult(T) = S.

Proof. Since S is a closed subsemigroup of G, then from Theorem 3.1.14 we can

find a filter F on G such that F = S! .We first show that :

(a) F ={e}, and
(b) For every U € F, there is a V € F such that for all z € V, 27U € F.

To prove (a), since {¢} C S' = F, then {e} C NA for all A € F, so
{e} C Afor all A€ F, which implies A € e for all A € F. So, A = {e}
for all A € F and then | F = {e}.
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To prove (b), let U € F, L a finite left ideal of S and let C' = G'\ U. Since
CNU = ¢, then onU = ¢, otherwise if there is p € CNU then C € p and
Uepso, CNU # ¢. Also, since £ C U then CNF = ¢. Thus 6051 = ¢.
Since S! is left saturated in BG, C - S' NS = woooovooooeeeee. (1)

Since L is an ideal of S, then L C S C S! so, for every q € L we have

So, from (1) and (2) we conclude that CqN S' = ¢. For every ¢ € L we can
choose W, € F such that C- q VI/ZI = ¢. To show this suppose by contrary
that CqnW # ¢ for all W € F then CgNF # ¢ hence, CqNS* # ¢ which is
a contradiction. Since W, € F, F € W/\/q, and F C V[//\'q. Put W=, Wq.
Then W € F, as L is finite, and F is filter. Moreover,

Next, since L is a left ideal of S, it follows that S*.I. C L. Since F is
filter and W,,U € F then U N W, # ¢. Now for every ¢ € L, choose
Vo=UNnW, e F. Since V, CU then V;,NC = ¢ ,thuquﬂé\:gzﬁso from
(3) ‘7(;-(] CW.Put V= Nyer Vo Then V € F and

We claim that for all z € V, 271U € F. Suppose to contrary that for some
r €V, z7 U ¢ F that is (z7'U)¢ € F thus F € (:FF)C But F € U so
(@Wﬁﬁ#(bso, there is p = F € ﬁandxpgé U that isxpeaand
p € S. Take any ¢ € L. Then, from (3),

apg=xp-qeC-LCHG\W,

and form (4),

qu:x~pq:6\7.L§W,

which is a contradiction.

Condition (b) can be restated in the following stronger form:

for every U € F, there is a V' € F such that V C U and for all x € V,
Ve F.
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To see this, for every U € F, let

Ul={zecU:a'UcF}

By (b) there is a V' € F such that for all z € V, 27'U € F. Since F is filter then
VNU=#¢soV CU° € F. We claim that (U°)? = U°

Clearly from definition of (U°)° that (U°)? C U°. Let x € U° and let V = z~'U.
Then from definition of U°, V € F. Also V' C U because for all t € V' we have
t € 271U and then 2t € U. Now we will show that V° C U°. Let y € V° and
let W = y~'V. Then from definition of V°, W € F. Also yW C V because for all
t € W we have t € y~'V and then yt € V. Consequently,

xyW CxV C U.

Hence W C (zy)~'U € F. Since y € V = 27U then zy € U. Therefore zy € U°
Since zV° C U°. then V° C 271U° € F so, x € (U°)°. Now let V = U° to get
the result.

It follows from (a) - (c) that there is a left invariant topology 7 on G in which F
is the neighborhood filter of e, and so Ult(7) = S. We now show that 7 is regular.
Assume by contrary that 7 is not regular. Then there is a neighborhood U, of e

such that for every neighborhood V' of e,

ct(VI\U # ¢

For every open neighborhood V' of e, choose z, € ¢/(V) \ U. Since z, € cl(V),
there is an ultrafilter on G containing V' and converging to x,. Consequently,
there is a filter p — z,. Since x,, ¢ U then x, # e. But p — x, so p not in S.
Since p — =z, so, z;'p — z 'z, = e. Let p, = x,'p then p, € S. Since V € p
then 2,1V € x;'p = p, so, V € z,p,.

Take any g € L, since ¢ € L then ¢ € S = Ult(r). Also since V' € x,p, then
TPy € V. By Lemma 3.1.9, \A/Ult(T) C V which impliese x,p,q € 1% and,

V€ zypuq,
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Since L is a left ideal of S then p,q € L. But L is finite, then p,q = ¢; for some
¢ € L. Thus V € z,q;,

Therefore, we obtained that there is an ultrafilter p not in S and ultrafilter
¢ in S such that pg; € S which impliese that S' is not left saturated in 3G,

contradiction. O

3.2 Local homomorphisms and projectivity

Definition 3.2.1. [17] Let G be a group, 7 a left invariant topology on G, and X
be open neighborhood of e in 7. A mapping f : X — 5, where S is a semigroup,
is called a local homomorphism if for every x € X \ {e}, there is a neighborhood

U, of e such that f(zy) = f(x)f(y) for all y € U, \ {e}.

Lemma 3.2.2. [17] Let G be a group, T a left invariant topology on G, and X
an open neighborhood of e in 7. Let f : X — T be a local homomorphism into
a compact right topological semigroup T such that f(X) C A(T), f: X — T be
the continuous extension of f, and let f* = ﬂUlt(T). Then f* : Ult(t) — T is
a homomorphism. Furthermore, if for every neighborhood U of e, f(U \ {e}) is

dense in T, then f* is onto.

Proof. [17] Since for any neighborhood U of e, U € ¢, then from a bove definition
we have if ¢ € Ult(r), then f(xy) = f(x)f(y) for all z € X and y € U for
all U € q. Also if f(x) € A(T) then Agqy is continuous so limy_.q Ar)(f(y)) =

~

Af(z) limy g fly) = )\f(a:)f(Q)
To show that f*: Ult(r) — T is a homomorphism, let p,q € Ult(7), Then

~ ~

f(pg) = f(limlim(zy)) and z,y € X

T—=pY—q

= lim lim f(zy) (because f is continuous extension of f)
T—py—q

= lim lim f(x)f(y) (because f is local homomorphism)
z—py—q

= =lim f(z)f(q) (because f(x) € A(T))
r—p
= f)f@
To check that f* is onto, let t € T. Since for every neighborhood U of
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e € X, f(U\ {e}) is dense in T, then for every neighborhood V of ¢ in T,
VN f(U\{e}) # ¢, thus there exists an x € U \ {e} such that f(z) € V. Let
A, C U\ {e} such that f(A,) CV, then A, # ¢. Let p be the ultrafilter contain-
ing A,, then from definition of A,,, p contains any neighborhood U of e. So, p — €
that is p € Ult(7). Also we can see lim,_,, f(x) = ¢ since for every neighborhood
V of t in T', there is a neighborhood f(A,) of p such that f(A,NX) = f(4,) C V.
Thus from Definition 2.2.13, we get the result.

It follows that there exists p € Ult(T') such that f(p) = f(lim,—px) = lim,_,, f(x)
t. [l

Example 3.2.3. [17/Let k be an infinite cardinal. For every ordinal o < K, let
G be a nontrivial group. Let G = @ G, and

D ={z € G :|supp(x)| = 1}.

Suppose fo: D — S is a mapping from D into a semigroup S. Then for all x € G
there exist n € N such that v = x1 - x9... - ¥, and x; € D, for all v = 1,...,n.

Extend fo to the mapping [ : G — S by

f(l’l C l’n) = f()(xl) et fo([L‘n),

where 1, ...,x, € D are such that if supp(xy) = {a1}, ..., supp(x,) = {a,}, then
aj < ... < ay, The value f(e) does not matter, and we can consider f(e) = fo(e).
Let x,y € G\ {e} such that max supp(z) < min supp(y). If v = x1 - x9...- Ty, y =
Y1 - Yoo s Yms Tiy Yy € D and if supp(z) = {ou,i = 1,.n} and supp(y) = {B;,7 =
1,..n}, then o, < By. Hence f(xy) = fo(z1)-...- fo(zn) folyr) - fo(yn) = f(z) f(y).
Let 7y be the topology on G and for any x € G \ {e}, take n = max supp(x), and
let U, = Hy1 = {x € G : supp(z) Nn+ 1 = ¢}). Thus form definition of o,
U, is a neighborhood of e. Also for all y € U, \ {e} we have max supp(z) < min
supp(y). Hence, f: (G,79) — S is a local homomorphism ........... (1)

Now let A be a cardinal such that |Go| > A for all @ < k and let p = max{r, A}.
Let T be any compact right topological semigroup containing a dense subset A such
that |A| < p and A C A(T). For any o < p define v : Go — D by pu(x) =y
where Yo, = = and yg = e for all § # a. Since |G,| > X then for v < p and
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Ty € G, define D, = {ps(z,) for all « < p}. From definition of D. we conclude
that D, C D and then |J D, C D. Now let v € D then so, supp(x) = {a}. Thus
To F €q. Suppose that x, = yg for some yg € G, then p,(yg) = x. Hence x € Dg.
Therefore D = \J D for all v < p. Let f < v < p, and suppose by contrary that
D, N Dg # ¢ for v # [B. Pick w in this intersection, then w = @q,(z) and
W = @q,(xg) where x, and xg lie in Gy, and G, repectivaly. Thus w,, = z~ and
Wa, = Tg. Stnce w € D then a; = ay and consequently x, = xg; that is, B = v
which is a contradiction. Thereore {D., : v < p} make a partition of D. Now for

every v < i define U, such that :
(a) ¢ ¢ Uy, and D, € U,,
(b) for any o < k, H, € U,,
(c) if AC G such that H, C A then A € U,,
(d) if AC G such that D, C A then A € U,,

Notic that U, is an ultrafilter, to see this it is suffices to prove that Ho, N D, # ¢
for any o < K. So, po(xy) =y where Yy, = T # 4. S0, wo(xy) € H,. Since
H, € U,. for all « < k then U, converge to the identity in 7o. Hence l/); NH # ¢.

Now, choose any surjection g : p — A. For any x € D, x € D, for some v <
so define fo: D — A by

fo(x) =g(v) ifz e D,

Let f: G — T be defined by f(x1-...-xn) = fo(z1) .o folzn) = g(n1) - g(m)
where x1,...,x, € D and x; € D.,. So from (1), f is local homomorphism. Then

[ Ult(r) — T is a surjective homomorphism.

Definition 3.2.4. [17|Let x be an infinite cardinal. For every ordinal a < &, let
G, be a nontrivial group. Let G = @ G,, 7 any nondiscrete zero-dimensional
left invariant topology on G such that 7y C 7, and X an open neighborhood of

e € G in 7. An independent system in X is a mapping M such that:
(a) D = dom(M) is a subset of X \ {e};
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(b) for every x € D, M(x) is a clopen subset of X \ {e} with z € M (z);
(c) M(z)N M(y) = ¢ for all distinct z,y € D.

If M is an independent system, then an M —product is a product of the form

xoxy...x,,8uch that for each i <n, z; € D and x; - ... - x,, € M(x;).
Lemma 3.2.5. [17]A decomposition into an M-product is unique.

Proof. Let xo-...-x, and yg - ... - y,, be M-products, and let z¢-...-Z,= Yo" ... * Ym
We prove that n = m and x; = y; for all ¢ < n. We proceed by induction on
min{n, m}.

Suppose that min{n, m} = 0. Now from definition of independent system z, €

M (zy), with out loss of generality, let n = 0 then

To=1Yo " - Ym € M(yo)

Since {M (x) : x € D} is pairwise disjoint, it follows that z¢ = o,

Moreover, m = 0 Indeed,otherwise y; - ... - ¥, = €, but y1 - ... - Yy € M(y1), so
e € M(y;) which contradict that M (y,) is a clopen subset of X \ {e}.

Let min{n, m} = K > 0 and suppose that the statment is true for all m < K.

Again from definition of M-products we find that
g e Ty € M(zg) and xo-o. Tp =Yo " .. Ym € M(yo)

,80 xg = Yo But then z; - ... - x, = y1 - ... - Y. So if we apply the inductive

assumption we get the result. O]

Proposition 3.2.6. [17] Let k be an infinite cardinal. For every ordinal o < K,
let G, be a nontrivial group. Let G = @ G, T any nondiscrete zero-dimensional
left invariant topology on G such that 19 C 7, and X an open neighborhood of
e € G in 1. Then for every homomorphism g : R — Qof a semigroup R onto
a semigroup Q and for every local homomorphism f : X — @, there is a local

homomorphism h : X — R such that f = goh.
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Proof. [17] For every x € X \ {e}, since f is local homomorphism, then we
can choose a neighborhood U, of e € X such that f(zy) = f(z)f(y) for all

Fy={y e X\ {e}:v(y) <v(z) and y(8) = z(p) for all 3 € supp(y)}.

Note that F} is finite. To show this, suppose by contrary that F) is infinite. Then
for all y € Fy, y(B) = z(B) for all B € supp(y), so there is infinite many terms Xz
such that Xz # es (i.e supp(z) is infinite ) contradiction. Also for every o < k,
let

X, = {x € X : max supp(z) = a}.

Define inductively an increasing sequence (M, )q<, of independent systems in X

by the following conditions:
(a) Mo = ¢;
(b) M, = U5<a Mp if o is a limit ordinal;
(¢) Dor1 =Dy U (X4 )\ UxeDa M,(x)), and

(d) for every € Dyy1 \ Da,

Maii(z) = (@(Us N Hywpe )\ | Maly).
yeF,NDa
Recall that for every o < K, H, = {x € G : supp(z) N = ¢}.
For n = 0, My = ¢ is an independent system. Suppose For all a < k, M, is
an independent system. Now, for n = a + 1 It follows from (c) that for every
T € Day1\ Da, 2 € (Xo \ Uyep, Ma(y)) so, © & U,cp, Maly). Since M, is an
independent systems, then for every x € D,,, M, (z) is a clopen subset of X \ {e}
with x € M (x). Then M,(y) is a clopen subset of X \{e} for ally € F,ND,. Since
F, N D, is finite, 50 Uyer, npa Ma(y) is closed which implies (¢ ~po Ma(y) is

Since Hy )41 € 10 € 7, Uy N Hy(y)41 € 7. But 7 is a left invariant topology on G
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so #(U, N Hy(g)+1) is openin 7 ........ (2).
From (1) and (2), Ma1(2) is open. Also from part (d) Mg, 1(z) = U, er,npa Ma(y)
which is open so M, 1(z) is closed. Therefore M, (x) is a clopen neighborhood

of x € X \ {e}. To see that

Moy1(z) N Masa(y) = ¢.

whenever x,y € D,,1 and z # y, suppose that z € D,1 \ D, then from part (c)
r € Xo\U,ep, Ma(z). So, v(z) = max supp(z) = a. If y € F,, then v(y) < v(x)
i.e max supp(y) < a. Thus y ¢ X, which implies from part (c¢) that y € D,, and
so from part (d) Muy1(2) () Mas1(y) = ¢. lf y ¢ F,, then v(y) > v(y) or there is
a @ € supp(y) with y(5) # x(5), so we have two cases:

Case (1): If v(y) > v(z), suppose that y(5) = z((5) for all 5 € supp(y), then
v(y) < v(z). Hence v(y) = v(z). Since z # y, there is v € supp(x) such that
Yy = €. Suppose to contrary xH, )11 NyHy )41 # ¢. Then there is r € Hy(gy41,
and m € H, 41 such that zr = ym. Since v < v(y) = v(z), then r, = m, = e,
Thus z., = z,r, = (21), = (ym), = y,m, = y, = e,, which is a contradiction.
Case (2): If there is a § € supp(y) with y(8) # x(/3). Suppose to contrary that
THy @1 N YyHyy)41 # ¢, then there is v € Hy(y)41, and m € H, )41 such that
xr = ym. Since y € Dy4q, then from part (¢), v(y) < v(x), so rzg = mg = eg,
where 8 < v(y) < v(x). Thus x5 = xgrg = (xr)s = (ym)s = ygms = yg = eg,
which is a contradiction. Therefore in two cases, *H,(z)+1 N yHy )41 = ¢, and
again by part (d), May:(2) N Masa(y) = 6.

Thus, (My)a<x is indeed an increasing sequence of independent systems in X.
Put M = {J,., M,. then M is an independent system in X. To show this, let
D = Dom(M) = U5, D(Ma)

(1) Since each D(M,,) is subset of X \ {e} so Dom (M) is subset of X \ {e}

(2) Let x € D then z € D(M,) for some o < k. Since (M, )< is an increasing
sequance then M(z) = M,(z) so M(x) is a clopen subset of X \ {e} with
x € M(x).

(3) Let x,y in D then there is o, such that x € D(M,,) and y € D(Mp). Since
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(Mga)a<r is an increasing sequance then there exist v = max{a, 3} such

that x, y € M, .But M, is an independent system then M (x) (M (y)=
M, (z) Y M, (y) = ¢

Now, We claim that:
(1) every X \ {e} can be decomposed into an M-product, and
(2) flxo- .. xn) = f(xo) - ... - f(x,) whenever zg...x, is an M-product.

To see (a), let € X \ {e}, then z € X, for some a, so fix a < k. We show
that every x € X, can be decomposed into an M, ;—product. We proceed by
induction on |supp(x)|.

Let |supp(x)| = 1. Then x € D,y1. Indeed, otherwise from (c) x € M,(y) for
some y € Dy, then from part (d) = yz for some z € Hyy) and v(y) <
where 3 = min supp(z), and so |supp(x)| > 1 because at least z3 and z,(,) in
supp(x) which is a contradiction. Since € Dyy1, © = x is an M, 1 —product.

Now suppose that |supp(x)| > 1 and the statement holds for all z € X, with

|supp(2)| < |supp(z)|.

If € Doy, then x = z is an M, 1 —product. Otherwise from (c¢) z € M,(y) for
some y € D,. Then from part (d) z = yz for some z € H, )41, and v(y) <
where § = min supp(z). Since x € X, then max supp(z) = «. Since v(y) < 3,
then supp(y) () supp(z) = 0, s0 x4 = (2y)a = 24 then z, # e. Moreover, if there
exists 7 > « such that z, # e, then max supp(x) # « which ic contradiction.
Therefore max supp(z) = a which implies z € X,.

Since v(y) < f, then supp(y) () supp(z) = 0. Since x = yz then |supp(z)| =
|supp(y)| + |supp(z)|. Thus |supp(z)| < |supp(z)] .

By the inductive hypothesis, z can be decomposed into an M,.;—product z =
Z1+..n2zp. Then & = yzy-...- z,. Since M, is an increasing sequance and x € M, (y)
then x € M,.1(y). Hence x is an M, ;—product. Now for all z € M , x € M,
for some a < Kk so z is M,1-product then x is M-product

To prove (b),first we will prove that M(z¢) C zoU,,, Let h € M(x) so there is
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h € My (zg) for some a < k then from part (d), h € zoU,, .
Let xg - ... - &, be an M-product, then xq - ... - x, € M(xy). But M(zy) C zoU,,

then xq - ... - &, € xoUy, S0, 1 - ... - T, € U,,. Then from (x)

flxo oo xn) = flwo)f(my - oo ).

In the same way M (z1) C x1U,,, 80 1+ ... - x, € 21Uy, = x9- ... 2, € U,,. Then

from (x)

Thus

flzo - xy) = fao)f(zr oo - ) = flxo) f(z1) f(T2 o 24).

Continue in this process we have

flxo- oo an) = flwo) f(z1) f(a2) - oo s fl2n).

We now construct h: X — R.
Since D = dom(M) is subset of X \ {e} then for every z € D, choose h(z) =
g~ (f(z)). Since each element in X \ {e¢} can be decomposed into an M-product

then we can extend h over X by
hzo - ... - ) = h(xg) « ... - h(zy),

where zg - ... - z,, is an M —product. Now for every x € D we have (g o h)(z) =

g(h(z)) = (g~ (f(x))) = f(x) so (go h)|p = flp.

Since ¢ is a homomorphism, then

gh(xqg ... - x,) = g(h(xg) - ... - h(xy))

and so f =goh.

To see that h is a local homomorphism, let © € X \ {e} be given and let z- ...z,
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be the decomposition of x into an M —product. For each i < n, one has x;-...-z,, €
M (z;). Define
V, = ﬂ(xl ) M ()

i<n
Since G is a group and (z; - ...~ x,) € G, then (x;-...-x,)"' € G. Sinse ;- ...~ z,, €
M(x;) for all i < n, then e = (z; ... - x,) (@ ... - x,) € (... - 1) "M (;) for
all i <n soeeV,.

Since M (x;) is open and 7 is a left invariant topology on G then (z;-...-z, )~ M (x;)
is open for all 7 < n Since the finite intersection of open sets is open then V, is
open .Therefore V, is neighborhood of e.

Let y € Vi \ {e}, and y = yo - ... - Y, the decomposition of y into an M —product.
Then for each i <n y = (x; - ... - x,) "'t where t € M (z;). Thus for all i < n, we
have (z; ... )y = (T; oo @) (T wp) =€t =t € M(x;). If i = 0 it follows

that xo - ... ,yo - ... - Ym is an M-product and we see that
hzy) =0 .- TpYo = - * Ym

= h(zo) - ... - h(zn)h(Yo) - - - h(Ym)

= h(z)h(y).

3.3 Finite groups in Stone-Cech compactifica-
tion

Theorem 3.3.1. [17] Let k be an infinite cardinal. For every ordinal o < k, let

G be a nontrivial group, G = €P,,_,. G, let

a<k

H= ﬂ {clsc{r € G\ {e} : min supp(x) > a}}.

a<k

Then H contains no nontrivial finite group.

Proof. Assume, on the contrary, that there is a nontrivial finite group @) in H. If

@ is not cyclic then we can find cyclic subgroup G in H generated by any element
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in (), so we will consider () as a cyclic group. Let u be the identity of (). Consider
the subset

S={reG :2Q=Q}.
In G* clearly @ is a left ideal of .S, because for all z € S,2Q = @ so SQ = Q.
To show that it is minimal, let ¢ € ) then St C (). Now let A € ). Since Q) is a
group, then t~! € Q. Thus h = ht~'t € St, since ht~! € S. Since ¢ was arbitrary

then from Lemma 1.1.27 it is minimal.

Also S can be defined as
S={reG :z2uec@}

To prove this let x € G* such that xu € @), and let t € @, then t = xh, h € Q.
Since u is the identity and @ is abelain then ¢t = zhu = zuh € @, so Q) C Q.
Since () is group, then it is minimal and hence zQ) = Q).

Conversely let x € G* such that z() = @) then xu € Q.

We will prove that S is a closed subsemigroup in G*, and S* is left saturated in
AG.

To check that S is a subsemigroup, let z,y € S. Then (2y)Q = z(yQ) = 2Q = Q.
Since z,y € G*, then xy € G*, and so, xzy € S.

To see that S is closed, let o = p,¢+. Since the function p, : BG — G is defined
by pu(z) = zu, then for all z € G*, o(z) = zu. Hence, 071(Q) = {z € G* : zu €
Q}= S. Since 7 is T} topology, then any finite set is closed which implies @ is
closed. Since o is continuous function, and Q is closed of G*, then S = o71(Q)
is closed.

To see that S* is left saturated, Suppose to contrary S! is not left saturated, then
(BG)S* N St # ¢ so, there is € BG such that xy = z for some y, 2z € S*. Thus
2yQ = 2Q. Since zy € S', then yQ = Q and zQ = Q so, 2Q = zyQ = 2Q = Q.
Suppose to contrary that x € G\ {e}. Since Q@ C H = Ult(r), then for all
ultrafilter p € @@ we have P — e. Since ), is continuous, for all x € G\ {e},
then xp — x. But 2Q = @, then zp — e for all p € Q). contradiction. Hence
r ¢ G\ {e}. Hence x € S! which is a contradiction.

By Proposition 3.1.16, there is a regular left invariant topology 7 on G with
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Ult(t) = S.

Since () is a minimal left ideal, there is only one minimal right ideal of S. To
prove this suppose by contrary there exist two minimal right ideals R; and Rs
of S such that R; # R,. Since () is a minimal left ideal, then by Theorem 1.1.28
K(S) = QRl = QRQ-

Let a € Ry, be arbitrary and let ¢ € @ then ga € QR; so, gqa = ¢'b for some
¢ € Q, and b € R,. Since @ is group, then ¢! exist. Thus, a = ¢ '¢'b € QR..
Since a was arbitrary then R; C QRy = K(S). But K(S) is the smallest ideal of
S then Ry = K(S). ceveveenene (1)

In the same way we can prove that Ry C QR; = K(S). Thus Ry = K(S) because
K(S) is the smallest ideal. .......... (2)

From (1) and (2), we have Ry = Ry which is a contradiction.

Since S have only one minimal right ideal Then by Lemma 3.1.10, 7 is extremally
disconnected. Being regular extremally disconnected, 7 is zero-dimensional.

Next, for every p € @), put
Sp={x €S :xu=p}
Claim: {S, : p € Q} is a closed partition of S

(a) To show tat |JS, =S, let x € S, then zu € Q). So, zu = p for some p € Q.
Thus, z € S, so S C |J.S,. Since S, C S for all p € @, then |JS, C S.

(b) If S, NS, # ¢ for some p,q € Q, then there is x € S, NS, so zu = p and

zu = ¢ 80, py,(x) = p and p,(x) = g so p = ¢ which implies that S, = S,.

(¢) To show that S, is closed, let o = py e+, then S, = o~ {p}. Since 7 is T
topology then any finite set is closed so {p} is closed. Since ¢ is continuous

function, and p is closed of G*, then S, is closed.

Now for all p € ), we have pu = p, because u is the identity of ). Thus, p € S,
for all p € Q. Since S, is closed, then from Theorem 3.1.14 we can find F, the
filter on G with ﬁ’;: Sp. For every p € ), S, NS, = ¢. If p # ¢ so, Eﬂﬁ;: 0.
Thus there is V}, € F},, and V, € F,, such that V,NV, = ¢. Now we will show that
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for each p € @, there is a W, € F}, where
W, Sy € Vg

for all ¢ € Q.

Let 7 = pulga\fey- Then 771 (pg) = {z € S : rho,(x) = pgt={z € S : 2u = pq}
= Spq. Since V,, € F,, = 13;1 C \//p\q so, T Hpq) = S,y = F/’p\q C \//p\q. Since
pu(Pq) = pqu, then pg € S,,. But S, is closed so, there is C}, € pg such that
g € Cpy C Sy

Now
7 (Cp) = {x € BG\ {e} : wu € Gy}
={x € BG\ {e} : zu € Sy}
= {z € G\ {e} s au € 77 (pq)}
= {z € BG \{e} : 7(au) = pq}
={z € BG \ {e} : zuu = pq}
= {z € G\ {e} : zu = pg} = 77" (pq) C Vpq
Next, we will prove that there is a W), € F), such that W,q C C/';] for all ¢ € Q.
Let ¢ € Q. Since Syu = {zu : x € S,} = {p}, then ﬁ;q = S,q = Spuq = pq.
Since F), € j’;, then F,q = pq so, Cp, € F,q, hence from Theorem 2.2.18 there
isW,={zeS:27'Cy € q} € F,. To show that W,q C 5;1 let © € W, then
rCy€q=Cy€xqg=1aq€ C/';q. thus W,q C C/’;q. Let W, = ﬂqu W,, since
Q is finite, then W, € F,. Also, W,q C W,q C C,y. for all ¢ € Q.
Since S,u = {zu: z € S;} = {q}, then

WpSqu = Wyq C é;q>

Since W,S,u = {zxu : v € W,5,} C C/';q, then W,S, C {z € 5G {e} : zu € C/';]} C
Since W, € F,, and V,, € F,, where F, is a filter then W,NV, € F,, and
W,NV, # ¢. Since W,,5, C ‘//;q, then (W, V,)S, C ‘7,;1. So we can choose
the subsets W), such that

Wp:Wpﬂ%g%
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and

X=wule

peEQ

is open in 7. Then define f : X — @) by

flx)=p if zeW,,

since W, C V), and V, NV, = ¢. If p # ¢, then W, "W, = ¢ for all p # ¢ and
hence f is well defined.

To show that f is a local homomorphism let x € X \ {e}, then z € W, for some
p € Q. For each ¢ € ), choose U, , € I such that

Upg CW, and 22U, C V.

To show this, let z € W, Since W,,S, C ‘//;1, then Wpﬁ’; C \7;1. But z € W,
and, F, € E then xF, € Wpﬁ; C 1//;1. So, xF, € ‘//p\q; that is, V,, € aFy,.
Thus from Theorem 2.2.18 7'V, € F,. Let M, , = 7'V, then M,, € F,.
Also, xM, , = V,q. Since M, , € F,, and W, € F;, then M,, N W, # ¢. Let
Upq= My, N Wy, then U, , € W,. Moreover, xU, , € v M, , = V.

Since X is open and e € X then there exist a neighborhood U, of e such that

UCX =U,coW,U{e}. Since 7 is a left invariant topology then zU, € 7. So,

pEQ
2U, is a a neighborhood of x and zU, C X. Since U, , C W,, then we can choose

a neighborhood U, of e € X such that
Uy C|JUsqU{e} and 2U,CX
q€Q
Now, let y € U, \ {e}. Then y € U,, for some ¢ € Q. Since zU,, € Vpgq, one

has zy € Vpg. But then, since V, NV, = ¢, W, N W, = ¢ for all p # ¢. Since
2U, C X, and zy € Vpq it follows that, zy € W,,. Hence

flzy) =pg = f(z)f(y).

Let f*: Ult(t) — Q. Now for each ¢ € Q, f*(q) = f*(Limy_,x) =lim,_,f(z)=
lim,_,(q) = g so f* is a coretraction.

On the other hand, let R be a cyclic group of order |Q|?, and let g : R — Q be a
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surjective homomorphism. By Proposition 3.2.6, there is a local homomorphism

h : X — R such that f = go h. Since h : X — R, then h* : Ult(t) — R so,
goh* : Ult(r) — Q.

Moreover, since f = g o h, then g o h*(q) = g(h*(q)) = g(h*(Lim,_.x) =
g(limy_4h(z)) = limgy_,9 0 h = lim,_,f(x) = f*(q). It follows that f* = goh*.
Since g is surjective homomorphism then by first isomorphism Theorem R/ Ker(g) =

Q so |R/Ker(g)| = |Q|. But |R/Ker(g)| = hnt = ey, hence |Ker(g)| =
Q.

Since f*is a coretraction, g is a coretraction as well. However, this is false because

R has only one subgroup of order |@| and it is the kernel of g. ]

Corollary 3.3.2. [17] Let s be an infinite cardinal, and G = @, Z,. Then
H, = ﬂ {clsc{r € G\ {0} : min supp(z) > a}.
a<k

contains no nontrivial finite group.

64



Chapter 4

Discrete Groups in 0N

4.1 Copies of Z

In this section we will show that there are 2¢ discrete copies of Z in each of the
maximal groups in the smallest ideal of (SN, +), and that any two of these meet

only on the identity. Recall that ¢ is cardinal number of R.

Definition 4.1.1. The discrete copy of 7Z is a countably infinite discrete space

homomorphic to Z.

Recall that we take the points of SN to be the ultrafilters on N, the principal
ultrafilters being identified with the points of N.[5] Given A C N, A = ¢4 =
{p € N : A € p}. The set {A\ A C N} is a basis for the open sets (as well as a
basis for the closed sets) of SN.

Remark 4.1.2. A fundamental topological property of SN which we shall need,
is that every neighborhood U C N of an ultrafilter p € N satisfies U NN € p.

We write N* for SN\ N and denote the set of finite nonempty subsets of a set
X by Pg(X). Also, w = NU{0}.

Definition 4.1.3. [4] Let p be an idempotent in SN, then we define the set
H(p) = U{G : G is a subgroup of AN and p € G}
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Theorem 4.1.4. [4] Let p be an idempotent in BN. Then H(p) is the largest

subgroup of BN with p is an identity.

Theorem 4.1.5. [4] Let S be a semigroup. If there is a minimal left ideal of S

which has an idempotent p then the following are equivalent.

(a) p € K(S) where k(S) is the smallest ideal of S.

(b) pSp = H(p).

If we apply Theorems 4.1.4 and 4.1.5 on SN we conclude that if ¢ is an idem-
potent of SN and ¢ € K(fN), then ¢ + N + g= H(q) with identity gq.
[4]In AN there are 2¢ minimal right ideals and 2° minimal left ideals, and conse-
quently 2° maximal groups in the smallest ideal.
Recall that if pand g in SN and A C N, A € ptqgifandonlyif {xr e N: —z4+ A €
q} € p, where -z + A={yeN:z+yec A}

Definition 4.1.6. [6] Given z € N, we define supp(x) is the H € Ps(w). such

that v = >, ,, 2" and this representation is unique.
Definition 4.1.7. [6] H= ", 2"N
Theorem 4.1.8. [}/ The set H is compact subsemigroup in (6N, +).

Lemma 4.1.9. [}/ Let q be an idempotent in (BN, +). Then for every n € N,
nN € ¢

From lemma 4.1.9 we can show that all idempotents of (5N, +) lie in H.
A topological space is said to be o—compact if it is the union of countably many

compact subspaces.

Theorem 4.1.10. /4] Let S be a discrete space and let A and B be o—compact
subsets of BS. If ANclB = clANB = ¢, then clANclB = ¢

Remark 4.1.11. If y € 2°N for some s € N, then min supp(y) > s.

Proof. Let s € N, and let y € 2°N, then y = 2°m for some m € N. So, there
is H € Py(w) such that m = Y, ;2" Thus y = 2° )", ;2" = >, ,; 2"7°. Since
t >0 for all t € H then 25 > 25 Hence min supp(y) > s. O
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Theorem 4.1.12. [6] Let A and B be infinite disjoint subsets of N. Let ¢ =
q+q € BK(PN), let u e N*Ncl{2" : n € A}, and let v € N* N cl{2" : n € B}.
Let ¢ and 1) be the homomorphisms from Z into the group q + BN + q such that
o(l) =qg+u+qgand (1) = g+ v+ q. Then cl{p(n) :n € Z\ {0}} Ncl{y(n) :
neZ\ {0} = o

If g ¢ ct{p(n):neZ\{0}}, then {o(n) :n € Z\ {0}} is a discrete copy of Z.
If g ¢ ct{(n) :n € Z\ {0}}, then {¢p(n) :n € Z\ {0}} is a discrete copy of Z.

Proof. First we will show that (1) € H. Since ¢ is an idempotent then ¢ € H.
Since H is semigroup then it is enough to show that v € H. Since v € ¢/{2" : n €
B}, then there is sequence X, € {2" : n € B} such that lim,, ., 2™ = v. where
m € B. Let k € N be fixed. for all m > k, 2" | 2™ that is there is r,, € N such
that 2%r,, = 2™. Hence v = lim,, .o 2™ = lim,,>; 2™ = lim,,>x 2ky. . Therefore
v € 2FN. Since k was arbitrary then v € H. So, (1) € H and consequently
(n) € H for all n € Z that is (Z) C H. In the same way we can show that
p(Z) € H.

Now We show that for any m € Z and any n € N,
{z € N: [supp(x) N A| =0 (modn)} € ¥(m) and

{z € N: |[supp(x) N B| =0 (modn)} € p(m).

It suffices to establish the first statement. Let n € N, and let C' = {z € N :
|supp(x) NA| = 0(mod n)}. We show first that C' € ¢. For each i € {0,1,2,...,n—
1} Let A; = {z € N : |supp(x) N A| = i(modn)} then the collection of sets
{Ay, ..., A,,_1} is partition of N. To show this let z € N. Since the set {0,1,2,...,n—
1} is complete residue system modulo n then |supp(z) N A| = i(mod n) fore some
i€{0,1,2,....,m — 1}, hence x € A;. So, N C U?:_OI A;. Since each A; C N, then
Ui, A; € N. Therefore | J7—, A; = N.

Suppose by contrary there is x € A; N A; for some 0 < 7 < j < n — 1 then
|supp(z) N Al = i(modn) and |supp(x) N A| = j(modn) which implies that
i = j(mod n) which is a contradiction.

Now we will prove that one of A; € ¢q. Suppose by contrary it is not true then
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A¢ € g for all i. Thus ), 'A¢ e . But N = Ur, Ay, then ¢ = N¢ = N, 'AC e g,
contradiction. Therefore we can choose i € {0,1,2,...,n — 1} such that D = {z €
N : |supp(x) N A| = i (modn)} € q. Since ¢ = ¢+ ¢, then D € ¢+ q. So,
{r e N: —z+ D € q} € q Hence, {x e N: —x+ D € ¢} N D # ¢ so, we
can pick x € D such that —z + D € ¢. Let ¢t = maxsupp(z). From Lemma
4.1.9, since ¢ is an idempotent, then 27N € ¢. Since ¢ is an ultrafilter, then
(—z + D) N DN2IN # ¢. Pick y € (—z + D) N D N 2N,

we will show that [supp(z + y)| =|supp(z)| + [supp(y)|. Since y € 27N, and
t = max supp(x), then from Remark 4.1.11 |supp(z)| N |supp(y)| = ¢. Let Hy,Hs
and Hz € Py(w) such that v = Y7, 28y =3 p 2% andz+y = 4 2"
Since Hy and H, are finite then = +y = >,y 2"+ 30 0 2% = >0 cp oy, 2.
From definition of supp(z + y), we have 3 2" = 37, .y, 25 Then Hy =
Hy, U Hy. Since Hy N Hy = ¢, then |Hs|= |Hy| + |Hz|; that is, |[supp(z + y)|
=|supp(z)| + |supp(y)|. Hence [supp(z + y) N A| =[supp(z) N A| + |supp(y) N Al.
Since y € (—x + D), then y + x € D so, i = |supp(z + y) N A|= |supp(x) N A| +
|supp(y) N A| =i+ (mod n) so, i =0, that is; D = C.

Now we show by induction on m € w that C' € 1(m). Since ¢ is the identity of
the group ¢ + SN + ¢, then ¢(0) = ¢. Hence C' € ¢(0). Assume that m € w and
C € ¥(m). Now

P(m) = (1) + ...+ (1) m times
=q+v+qg+qg+v+qg+...+qg+v+q m times

=q+v+qgq+tuv+qg+...+qg+v+q since g+q=q

So,
P(m+1) =(1) 4+ ... + (1) m+1 times

=¢+v+q+qt+v+qg+..+q+v+qg+qg+v+gq m+ 1 times
=q¢g+v+q+v+qg+...+qg+v+qg+v+gq since q+q=q
=Y(m) +v+q.

Hence we will show that C' € ¥(m)+v+gq. First we prove C C{z € N: —z+C €
v+ q}, so, let x € C and let t = max supp(x). We claim that for s >t and s € B
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we have C'N 257N C —2% + (—z + (). So, let y € C'N2°TN. Since s > ¢, then
|supp(x+1y) N A| =|supp(xz) N A| + |supp(y) N A]. Since A and B are disjoint, then
s ¢ A. Since supp(2°) = {s}, then supp(2°) N A = ¢ so, |supp(z +2° +y)NA| =
|supp(z 4+ y) N A|. Since z an y € C, then [supp(z) N A| = [supp(y) N A| = 0.
Hence |supp(x +2° +y) N A| = |supp(x) N A| + |supp(y) N A| = 0 mod( n). Thus
r+2°+yeC. thatisy € =25+ (—z + O).

Since ¢ is an idempotent then by lemma 4.1.9, 2°*'N € ¢ so, C N 25N ¢ ¢,
and then —2° + (—x 4+ C) € ¢q. Thus {2° : s € Band s > t} C {z € N :
—z+4 (—x 4+ C) € ¢}. Since {2° : s € Bands > t} € v, and v is an ultrafilter,
then {z € N: —z+ (=2 + C) € ¢} € v. Therefore —x + C € v + ¢. which
implies C C {x € N: —z 4+ C € v + ¢q}. By induction hypotheses C' € ¥ (m),
and ¢(m) is an ultrafilter, so {x € N : —x + C € v+ ¢} € ¥(m), that is;
Ceyp(m)+v+qg=1v(m+1).

To complete this portion of the proof, we let m € N and show that C' € ¢(—m).
Since the sets { Ao, ..., An,—1} is partition of N, and ¢(—m) is an ultrafilter, then we
can pick i € {0,1,...,n—1} such that D = {x € N : [supp(z)NA| =i (modn)} €
(=m). Since 1(0) = ¢, then €' € ¢ = ¥(0) = ¢(m + (=m)) = ¥(m) +b(—m)
so, {r € N: =z +C € ¢¥(m)} € ¥(—m). Hence DN{x € N: —x +C €
w(m)} # ¢. So, pick © € D such that —x + C € (m). Let t = max supp(z).
Since ¢(m) € H and (—z + C) N C € ¥(m) so, cl((—z + C) N C) N 2N £ ¢.
Thus there is a principal ultrafilter y in 2°7'N such that (—z + C) N C € vy,
that is; y € (—z + C) N C N 27N, Since ¢ = max supp(z) and y € 27N, then
|supp(z + y)| = |supp(z)| + |supp(y)|. Since y € —x + C, then x +y € C. Hence
0 = [supp(x + y) N A|= |supp(z) N A| + |supp(y) N A| =i+ 0 mod( n), so i = 0.
That is D = C.

By a nearly identical proof, one can also establish that for any m € Z, and any
neN

{z € N: [supp(x) N A =m (modn)} € p(m) and
{z € N: [supp(x) N B| = m (modn)} € p(m).

Notice in particular that this shows that if & # m in Z, then o(m) # (k)
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because we can find n € N such that £ an m are not congruence mod n. So,
Up ={z € N: |[supp(x)NA| = m mod( n) } € p(m) and U,, ¢ ¢(k). In the same
way we can show that ¢(m) # ¥ (k) if m # K.

Now suppose that cl{p(n) : n € Z\ {0}} Nncl{y(n) : n € Z\ {0}} # ¢. Then
by Theorem 4.1.10, either {p(n) : n € Z\ {0}} Nct{yp(n) : n € Z\ {0}} # ¢
or {¢(n) :n € Z\{0}}Necl{p(n) :n € Z\ {0}} # ¢. Assume without loss of
generality, that the former holds and pick m € Z\ {0} such that ¢(m) € cl{y(n) :
n € Z\ {0}}. Since U = {z € N : |supp(z) N A| = m (mod |m|+ 1)} € ¢(m),
then clU is a neighborhood of ¢(m). We claim that ¢/U N {¢(n) : n € Z} = ¢.
Suppose by contrary it is not true and pick n € Z such that ¢)(n) € ¢fU. Then
U € ¢¥n), and S = {x € N : |supp(x) N A = 0 (mod |m| + 1)} € (n).
Since 1 (n) is an ultrafilter, then U NS # ¢. So, there exist z € N such that
|supp(x)NA| = 0 = m (mod |m|+1)} contradiction. So, cLUN{¢(n) : n € Z} = ¢.
then ¢(m) ¢ cl{y(n) : n € Z\ {0}}. Contradiction.

To complete the proof, we may assume that g ¢ cl{p(n) : n € Z\ {0}}. Pick a
neighborhood U of ¢ which misses {¢(n) : n € Z\ {0}}. Given n € Z\ {0}, since
q=¢(0) =pn+(—n)) = ¢p(n) + ¢(—n) then U is a neighborhood of ¢(n) +
©(—n). Let A be a basic neighborhood of ¢(n)+¢(—n), such that ¢(n)+p(—n) €
A C U, then A € p(n)+ ¢(—n); that is, B={z € N: —z+ A € p(—n)} € o(n).
We claim that B + ¢(—n) C A. Let P + ¢(—n) € B + ¢(—n) where p € B, then
B={xeN:—x+ A€ o(—n)} € p which implies that A € p+ ¢(—n). Hence
B+ ¢(—n) C U. We claim that BN {@(m) : m € Z\ {n}} = ¢, otherwise if there
is m € Z\ {n} such that ¢(m) € B, then ¢(m) +¢(—n) C B+ ¢(—n) C U. Thus
¢(m —n) € U. which is a contradiction. Hence BN {o(m) : m € Z} = {p(n)}
so {¢(n)} is open in the subspace generated by {¢(n) : n € Z}. So, it is discrete
copy of Z. O
Corollary 4.1.13. [6] Let ¢ = q+q € K(BN). For each p € N*N{2" : n € N} let
@, be the homomorphism from Z to the group q+FN+q for which ¢, (1) = ¢+p+q.
Ifp#r e N N{2":neN}, then cl{p,(n) : n € Z\ {0}} Nnct{p.(n) : n €
Z\ {0}} = ¢ and for all but at most one p € N*, {¢,(n) : n € Z is a discrete
copy of Z.
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Proof. let p #r € N*N{2" : n € N}. Since p # r, then there is disjoint subsets A
and B of N such that A € pand B € r. Sincep € {2" : n € N}, then {2" : n € N}N

N € p, hence, {2":n € A} = {20 : n € N}JNNN A € p. In the same way we can
show that {2":n € B} ={2":neN}JNNNBer.

Now if we applied the Theorem 4.1.12 on the homomorphisms ¢,(n) and ¢,(n)
we get cl{pp(n) :n € Z\{0}} Nel{pr(n):n € Z\{0}} = ¢.

Suppose by contrary there is two element p,r € N* and p # r such that ¢ €
cl{py(n) :n € Z\ {0}}, and ¢ € cl{p.(n) : n € Z\ {0}}, then cl{p,(n) : n €
Z\A{0}} ncl{py(n) :n e Z\ {0}} # ¢ which is a contradiction. So, there is at
most one p € N* such that p € cl{p,(n) : n € Z\ {0}}. Hence from Theorem
4.1.12 we conclude that for all but at most one p € N*, {p,(n) : n € Z} is a

discrete copy of Z. O

4.2 Discrete free groups and semigroups in N*

Recall that we say a group G is generated by a subset 5, if every element of the
group can be expressed as the combination (under the group operation) of finitely

many elements of the subset S and their inverses.

Definition 4.2.1. [18] A group F' is called free if there is a subset S of F' such
that any element of F' can be written in one and only one way as a product of

finitely many elements of S and their inverses.

Construction[18] The free group F' with free generating set S can be con-
structed as follows. S is a set of symbols and we suppose for every s in S,
there is a corresponding ”inverse” symbol, s71, in a set S~!. Let T'= SU S,
and define a word in S to be any written product of elements of 7. The empty
word is the word with no symbols at all. For example, if S = {a,b,c}, then
T ={a,a,0,b7',¢c,c™'} and abc 'ca™'c is a word in S. If an element of S lies
immediately next to its inverse, the word may be simplified by omitting the s, s7*
pair:

1

abc tca e — aba"lc.
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A word that cannot be simplified further is called reduced The free group F' is
defined to be the group of all reduced words in S. To illustrate the operation
group on £’ we give an example.

(ab=3a720?).(b2a3b~c) = (ab3abc).

Theorem 4.2.2. [4] Let (S,.) be a semigroup, A C P(S) have the finite intersec-
tion property . Let (T,.) be a compact right topological semigroup and ¢ : S — T
satisfy (S) C A(T). Assume that there is some A € A such that for each x € A,
there exist B € A for which ¢(x.y) = @(x).o(y) for every y € B. Then for all

.4 € Nuca A 2(p-q) = 3(p)-3(q)-

Lemma 4.2.3. [}/ Let A be a set and let F be the free group generated by A, let
G be an arbitrary group and let ¢ : A — G be any mapping . There is a unique
homomorphism @ : F' — G for which $(g) = ¢(g) for every g € A.

Theorem 4.2.4. [}] Let A be a set, and let F be the free group generated by A.
Then F' can be embedded in a compact topological group. This means that there

is a compact topological group C' and a one to one homomorphism ¢ : F — C.

Corollary 4.2.5. [6] There is a compact topological group C which contains a

free group F' on the distinct generators {ay, as, as, as}.

Proof. Let A ={ay,as,as,as}. Then by above theorem, here is a compact topo-

logical group C' and a one to one homomorphism ¢ : F' — C. O]

Lemma 4.2.6. [6] Let C' and F be as in Corollary 4.2.5. Let Ay, As, As, and Ay
be pairwise disjoint infinite subsets of N and let ¢ € K(SN). Fori € {1,2,3,4}
pick

w € N*Nel{2" :n € A;}
and let r; = q + u; + q. Let G be the subgroup of ¢ + BN + q generated by
{r1,7m9,73,74}. There is a continuous homomorphism o : {0} UH — C such

that o\ is an isomorphism onto F' and o(r;) = a; for each i € {1,2,3,4}.

Proof. Denote the identity of C' by e. Since each n € w, can be expressed uniquely

asn =y , ;2" where H € Ps(w) then define f : w — C as follows. Forn € w,
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a;, né€A;

e, n¢U-, A
Given L € Pr(w), f,er2") = Il,.ep f(2") where the product is taken in

f@2n) =

increasing order of indices. And f(0) = e. Let ]?: Bw — C be the continuous
extension of f, and let o be the restriction of f to {0} UH. Now we will show that
o is a homomorphism. Since C' is a compact topological group then A(C) = C.
Take the collection A = {2"w : n € N}. Let F = Py(w), and let S = Ngep2Fw.
We claim that S # ¢. Let t = max F then for all k € F, k >t = 2F | 2!. So,
2t = 2Fm for some m € N. Thus 2! € S. Since F' was arbitrary, then A has a
finite intersection property.

Let A = {2w}, let z € A and let t = max supp(x) then for all y € B = {2'w},
min supp(y) > 271 Thus supp(z) N supp(y) = ¢ which implies f(x + y) =
f(z)f(y). Therefore By Theorem 4.2.2 applied to the collection A = {2"w : n €
N}, o is a homomorphism.

To see that o[G] = F, it suffices to let i € {1,2,3,4}, and show that o(r;) = a;.
Since u; € cl{2™ : n € A;}, then there is a sequence (z,) in {2" : n € A;} such
that x, converge to w;. Since f is constantly equal to a; on {2" : n € A;}, and
o is continuous, we have that o(u;) = limo(x,) = a;. Since ¢ + ¢ = ¢, then
o(q).0(q) = o(q). Since C' is group then o(q) = e. Since r; = ¢ + u; + ¢. then
o(r;) = eae = a;.

From lemma 4.2.3, we can pick a homomorphism h : F' — G, such that h(a;) = r;
for each i € {1,2,3,4}. Then h[F| = G. Therefore coh : F — F and oo h(a;) =
o(h(a;)) = o(r;) = a;, for each i € {1,2,3,4}, so o o h is the identity on F' so o

is injective. O
Lemma 4.2.7. [/] N is the center of (BN, +) and (ON,.)

Theorem 4.2.8. [6] Let Ay, As, A3, Ay, C, F, G, uy, us, us, uy, 1, 9, 13, T4, and
o be as in Lemma (4.2.6). Let Gy be the subgroup of G generated by {ri,rs} and let
G be the subgroup of G generated by {rs,rs}. Then cf(G1\{q})Ncl(G2\{q}) = ¢.
If i € {1,2} and q & cl(G; \ {q}), then G; is a discrete copy of F.
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Proof. Suppose that c¢/(Gy {q}) N cl(Ga {q}) # ¢. By Theorem 4.1.10, either
(G1\ {q}) Ncl(G2\ {q}) # ¢. or cl(G1 \ {q}) N (G2 \ {q}) # ¢. Assume without
loss of generality that (G \ {q}) N cl(G2 \ {¢q}) # ¢, and pick w in this intersec-
tion. We shall show that w = ¢. Let s; and sy denote the inverses of r; and 79
in Gy. Since w € (G \ {¢}), then w can be written as a linear combination of
the elements of {71,719, s1,$2}. Pick m € N and py, pa, ..., pm € {r1,72, $1, S2} such
that w = p1 +pa + ... + Dm.

Define 6 : N — w by (n) = S{2" : t € supp(n) N (A;UAy)}, and let 6 : BN — Sw
be its continuous extension. Take the collection A = {2"w : n € N}. then As in
proof of lemma 4.2.6 A has a finite intersection property. Now, let A = {2w}, let
z € A and let t = max supp(z) then for all y € B = {2'w}, min supp(y) > 21
Thus supp(x) N supp(y) = ¢ so, [supp(x + y)| = [supp(z)| + [supp(y)|. Hence
|supp(z + y) N (A1 U Ay)| = |supp(z) N (A3 U Ag)| + |supp(y) N (A1 U Ay)|. If
r = Y.y 2 and y = Y, 2% for some Hy, Hy € Pg(w), then = +y =
> ernemum, 27 Since supp(z) Nsupp(y) = ¢, then f(z +y) = {2 s+ k €
supp(z +y) N (A U Ay)} = 3{2° : s € supp(z) N (A U A+ B{2% : k €
supp(y) N (A3 U Ag)}; that is, f(x +y) = f(x) + f(y). If we consider 0 : N — [w,
then fw is a compact right topological semigroup and §(N) C w = A(fw). By
Theorem 4.2.2 é\IH is a homomorphism.

Also, g(IHI) C H U {0}. To show this let p € H. Then p € 2N for all n € N.
Fix k € N, since p € 2FN, then there is a sequence z, = 2¥s € 28N such that
converge to p. Now we have two cases:

Case (1): If k ¢ A; U Ay, then 6(2%) = 0. Since 0 is continuous, then é\(p) =
lim A(2%)8(s) = lim 6(2)6(s) = 0.

Case (2): If k € AjUA,, then 6(2F) = 2% So, B(p) = lim 6(2)6(s) = lim 6(2%)0(s) =
lim 250 (). If 6(s) = 0 for all but finitely number of z,, then lim #(s) = 0 which
give f(p) = 0. If there is infinite number of z, such that 6(s) # 0 then we
can find subsequence y,,, of x, such that (2m) # 0 for all 2¥m € y,,,,. Hence
/9\(])) = lim 2*0(m). Moreover, y,,. € 2*N so, é\(p) € 2FN. Since k was arbitrary,
then 8(p) € 2°N for all n € N; that is, 6(p) € H.

For i € {1,2}, and n € A;, we have §(2") = 2". So, 6 is the identity on
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{27 . n € A;}. Since u; € cl{2" : n € A;}, then O(u;) = u; and since ¢ + ¢ = ¢,

-~ ~ ~ ~

then 0(0(q)) = 0(0(q)) + o(0(q)). Since C is a group, then o(6(q)) = e. Thus for
ie{1,2},

~ o~

o(0(r:)) = o (0(q + wi + q))

-~ -~ ~

=0(0(q)) +o(0(w;)) + o(0(q))
= eo(u;)e

= o(q)o(ui)o(q)

Since e = o(s;)o(r:), and e = o(8(r;))o(0(r:)"1) = o(r;)o(0(r;)"!) and C is a

~ -~ ~

group, then o (0(s;) = a(0(r; 1)) = a(0(r;) ™) = o (s:).

(2

Next we note that for i € {3,4}, and n € A;, 6(2") = 0, because n ¢ (A; U Ay).

Since u; € cl{2" : n € A;}, then 5(ul) = 0 and since ¢ + ¢ = ¢, then g(q) =

~ ~

0(q) + 0(q). Thus for i € {3,4},

~ ~

o(0(r:)) = o (0(q + wi + q))

~ ~

=o(0(q) +0+0(q))

= 0(f(q)) =e.

Also, o(6(s;) = o(8(r;)~1) = e. Thus we have o 0 8]Gs] = {e}. Since w € ¢l(Gs \
{q}), then o(8(w)) = e; that is, 0(0(p1+pa-t...+pm)) = e. But w € (G1\{q}), then
a(é\(pl +pat...4+pm)) = o(p1+p2+...+pm) because py1, pa, ..., P € {71,772, 51, S2}.
Hence o(p1 + p2 + ... + pm) = e. from proof of lemma 4.2.6 we have o(q) = e and
o is an isomorphism on G so, w = p; + pa + ... + p,,, = ¢ which is a contradiction.
Now to complete the proof let i € {1,2} and q ¢ c¢/(G;\{q}). Pick a neighborhood
U of ¢ which misses G; \ {¢}. From lemma (4.2.3) we can find a homomorphism
h: F — G,. Pick z € F. Then h(e) = h(zz~!) = h(z) + h(z™') = ¢. Let A

be a basic neighborhood of h(z) + h(z~') such that h(z) + h(z~') € A C U,
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then A € h(z) 4+ h(z™'). So, B={x € G: —z+ A € h(z™1)} € h(z). We claim
that B + h(z™!) C A So, let p + h(z™) € B + h(z™). Since B = {z € G :
—z4+ A€ h(zV)} € p, then A € p+ h(z™?). Thus p+ h(z™) € A C U. We
claim that B N {h(y) : y € F\ {z}} = ¢. Suppose by contrary it is not true and
pick y € F\ {z} such that h(y) € B then h(y) + h(z~!) = h(yz~!) € A C U,
contradiction. Hence BN {h(y) : y € F} = {h(z)}. then G; is a discrete copy of
F. [

Corollary 4.2.9. [6] Let ¢ = q+ q € K(PBN). There ezist 2° copies of the free
group on 2 generators in (q+ SN+ q) NH. The intersection of the closures of any
two of these is {q}.

Proof. Partition N* N {2" : n € N} into two element subsets H, = {x,ya} for
a < 2¢ For each a < 2° let GG, be the subgroup of ¢ + N + ¢ generated by
q+ 2o +¢q and ¢+ 1y, +¢q If « < B < 2% then 2, # yo # 3 # yp. Pick
disjoint subsets Ay, Ay, Az, Ay of N such that 41 C z,, Ay C y,, A3 C 23,
and Ay C yg. Since {2" : n € N} € 24, then {2" : n € A1} = {2" : n €
N} NnA; NN € z,. In the same way we can show that {2" : n € Ay}, {2" :n €
Az}, {2" 1 n € Ay} are members of y,, x4, ys respectively. By Theorem 4.2.8
cl(Go {q}) N cl(Gs {q}) = ¢. Hence there is at most one a < 2¢ for which there
is some 0 # a with c/(G, {q}) Ncl(Gs {q}) # ¢. O

Definition 4.2.10. [4] A semigroup S is weakly left cancellative if and only if for

all u,v € S, {r € S:xu=v}is finite.

Of course a left cancellative semigroup is weakly left cancellative . On the

other hand the semigroup (N, V) is weakly left cancellative.

Definition 4.2.11. [14] A subset of topological space is Gy if and only if it is

countable intersection of open sets.

Theorem 4.2.12. [}/ Let S be an infinite right cancellative and weakly left can-
cellative semigroup. Then every Gs subset of S* which contains an idempotent

contains a copy of H.
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Corollary 4.2.13. [6] Let S be an infinite discrete right cancellative, and weakly
left cancellative semigroup. Let U be a Ggs subset of 3S \ S which contains an
idempotent. There is a set D C U of idempotents such that |D| = 2¢, and for
each q € D, there exist 2° copies of the free group on 2 generators in q3Sq. The

intersection of the closures of any two of these is {q}.

Proof. By Theorem 4.2.12, U contains a copy of H. Since H contains all idempo-
tents of SN, then There is a set D C U of idempotents such that |D| = 2°. Now

for each idempotent ¢ € D apply Corollary 4.2.9 to get the result. [

Note that one can take U = £S5\ S in Corollary 4.2.13, so any right cancellative
and weakly left cancellative semigroup S has these discrete copies of the free group

on 2 generators in 35\ S.

Definition 4.2.14. [9] Let X be an infinite set. A set A is a set of almost disjoint
subsets of X if and only if A C P(X), for each A € A, |A| = |X]|, and for A # B
in A, AN B is finite .

Note 4.2.15. [9] There is a set A of ¢ almost disjoint subsets of N. Probably
the simplest example of a set of ¢ almost disjoint subsets of a countably infinite
set can be obtained as follows: For each o € R, choose an increasing sequence
(Tan)o in Q which converges to a. Then {{xqn :n € w}: a € R is a set of

almost disjoint subsets of Q.

Definition 4.2.16. [4] A subset D of a topological space X is strongly discrete, if
there is an indexed family (U, ).cp such that for each x € D, U, is a neighborhood
of z, and U, N U, = ¢ when = # y.

Theorem 4.2.17. [6] There is a strongly discrete copy of the free semigroup with

identity on ¢ generators in H (which is therefore discrete in N*.)

Proof. Pick an indexed family (A,).<. of almost disjoint subsets of 2N+ 1. (That
can be done from note 4.2.15. For each o < ¢, pick p, € N*Ncl{2" : n € A,}.
Since HN el{z € N : supp(x) C 2N} is compact subsemigroup in SN, then from
Theorem 1.2.34 part (a), it has an idempotent. Pick ¢ = ¢+ ¢ € c¢l{x € N :
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supp(x) C 2N}. For o < ¢, let 1o, = ¢ + po + ¢, and let S = {q} U {r, : a < ¢}.
Since ¢ is an idempotent, then g € H. Since p, € c¢f{2" : n € B}, then there is se-
quence X,, € {2" : n € A,} such that lim,, .., 2™ = p,, where m € A,. Let k € N
be fixed for all m > k, 2% | 2™. That is; there is 7, € N such that 2Fr,, = 2™.
Hence p, = lim,, o 2™ = lim,,>4 2" = lim,,> 2Fr,.. Therefore p, € 2FN. Since
k was arbitrary, then p, € H. Since H is semigroup, then r, € H. So, S C H.

For each finite sequence (o, avg, ..., o) in ¢, let B, as,..ar) = {2 € Nt supp(x) N

(2N+1) = {n1,ng, ...,ni}, where ny < ny < ... < ng and each n; € A,,}. Now we
{2°:s€Ags >y C{heN: —=h+ (=y + (=2 + B(ay,as,.00))) € q}- Let
t = max {max supp(y), max supp(z)}, and s € A,,. We claim that C'N 27N C
in C, then supp(w) C 2N and supp(y) C 2N. Since ¢ > max supp(y), then
supp(w)Nsupp(y) = ¢ and supp(w)Nsupp(z) = ¢. Moreover, since supp(y) C 2N.
supp(x +y) N2N+1 = (supp(x) N2N + 1) U (supp(y) N2N + 1). In the same way
supp(z +w) N 2N + 1 = (supp(x) N 2N + 1) U (supp(w) N 2N) + 1.

Hence supp(x +y + 2° +w) N 2N + 1 = (supp(x) N 2N + 1) U (supp(z) N 2N +
1) U (supp(2®) N 2N + 1) U (supp(w) N 2N + 1) = {ny,n9,....,nk1} U ¢ U s

.....

~~~~~

-----

Since po, € cl{2" : n € A,}. then {2° : s € A, s > ng_1} € DPa,. So,
{_y+(_x+B(a1 Qs

Therefore —z + Ba, a0,...,

Now we will see by induction on k that for each (a1, s, ...,ar) , By as,...ax) €

Tay +Tay+ ...+ 7o, At k =1 we will show that C C {x € N: =2+ B(o,) € Pa 44}
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so, let y € C. We claim that {2°: s € Ay, } C {2 € N: —24(—y+DBa,)) € q}. Let
t = max supp(y), let s € A,, and let w € C' N 27N, Since each of w and y in C
then supp(w) C 2N and supp(y) C 2N. Since s € A,, then supp(y+2°+w)N2N+
1 = {s}so0, y+2°4+w € B,,. Thus CN2"*"'N C —2%+(—y+ B,, ) and Consequently
—2°4+ (=y+ Ba,) €q. Hence {2° : s € Ay, } C{z € N: =2+ (=2 + Ba,)) € q}.
Since {2° : s € Ay} € pa, then {z € N: —z+ (—y + B(a,)) € ¢} € pa, which
implise that —y + B(a,) € Pa, +¢. S0, C C {x € N: —x + B(s,) € Pys 14} Since
C € qthen {r e N: —x + Ba,) € Pa,+q} € ¢. Therefore B(,,) € 7q,.

Suppose the statement is true for n = k£ — 1; that is, for each (ay, g, ..., ax_1)
, Blavas,an 1) € Tay +Tag + .. + 70, . For n =k let (oq, a, ..., ax). From x,
Blayaz,ar ) S {r e Nt —z + B(al7a2,_,_7%)erak}. 0, B(a,as,ax) € Tay + Tay +
e T Tay

Let C = {z € N : supp(x) C 2N}. Note that for each (ay,as,...,ar), C' N
Blayas,....ar) = ¢- Otherwise if there is x in the intesection then, supp(x)N2N+1 =
¢ since x € C and supp(x) N 2N + 1 = {ny,ng,...,ngp_1}. Since w € Ba, as,....ax)
contradiction.

To complete the proof we show that if (ay, a, ..., ag) # (01, 02, ..., &), then Bia, ap.....ap)N
mﬂH = ¢. If k # [, then B4, ao,....a1) NV B(51,62,....5,) = ¢, otherwise if there
is w in this intersection, then |supp(w) N2N+ 1| = k and |[supp(w) N2N+ 1| =,
contradiction. So assume that k = [ and pick i € {1,2,...,k}, such that a; # 9;.
Since A,, N As, is finite, then pick m € N such that A,,N A4, C {1,2,...,m}. Then
Blay,az,...ar) N B(s1,65,....5) N 2mHIN = ¢. To show this, suppose by contrary there is
y in the intersection, then min supp(y) = m+1. But y € B(a, a0,....a1) V1 B(51,62,...6,)
then there is n; € supp(y) such that n; € A,, N As, so, n; < m. which is a

contradiction.
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