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3.3 Finite groups in Stone-Čech compactification . . . . . . . . . . . . 59

4 Discrete Groups in βN 65

4.1 Copies of Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Discrete free groups and semigroups in N∗ . . . . . . . . . . . . . 71

REFERENCES 80

i



ACKNOWLEDGEMENTS

First, I’m very grateful to my god for every thing he gave me. Also, I am grateful

to my lovely parents for their immolation, subsidization and guidance.

I would like to thank Dr. Ahmed El Mabhouh , my supervisor for his guid-

ance and his helpful suggestions during my work to complete this thesis.

Finally I wish to thank my teachers in the Department of Mathematics in Is-

lamic University for their encouragement and for supporting me in my studying.

ii



Abstract

Let κ be an infinite cardinal. Let G =
⊕

α<κGα where Gα is a nontrivial group.

Now let βG be the Stone-Čech compactification of G and let H =
⋂
α<κ{c`βG{x ∈

G \ {e} : min supp(x) ≥ α}. Then we will show that H contains no nontrivial

finite group. Moreover for the set of natural number we show that every maximal

group in the smallest ideal of (βN,+) contains 2c discrete copies of (Z,+) the

closures of any two of which intersect only at the identity. We also show that the

same conclusion applies to copies of the free group on two generators.
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Introduction

Compactification theory is of great importance in topology and functional analy-

sis. This is due to the fundamental role of compact spaces in these two branches

of mathematics. Many properties of a topological space are a lot easier to deduce

if the space is a compact Hausdorff space. Given a space X it is probably not

compact and hence it is difficult to handle. Then we must look for a compact

Hausdorff space Y , which is very similar to X. We can then use results in Y

and translate them back to the original space X. For any topological space X,

a compact Hausdorff space Y is called a compactification of X, if there is an

embedding φ of X into Y such that φ(X) is dense in Y . In this work we will

study a very special compactification, independently introduced during the year

1937 by M. H. Stone and E. Cech. This compactification is called the Stone-Čech

compactification of X and is denoted by βX. We take the points of βX to be

the ultrafilters on X. In βN there are 2c minimal right ideals and 2c minimal left

ideals, and consequently 2c maximal groups in the smallest ideal.

N. Hindman and D. saturass [6] show that every maximal group in the smallest

ideal of (βN,+) contains 2c discrete copies of (Z,+) the closures of any two of

which intersect only at the identity. They also show that the same conclusion

applies to copies of the free group on two generators. Also, N. Hindman and J.

Pym [8] show that the structural group of K(βN) contains as a subgroup the

free group on 2c generators. This raised the question of whether any nontrivial

finite group exists in βN. The question was solved in the negative by Y. Zelenyuk

[16]. In fact, it was shown that if X is a countable torsion-free group, then βX

contains no nontrivial finite group (see also [2, Section 7.1]) . I. Protasov [2]
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generalized this result by characterizing the finite groups in βX, where X is an

arbitrary countable group. Every finite group in βX has the form Hp for some

finite subgroup H of X and some idempotent p in βX which commutes with all

the elements of H. However, nothing has yet been obtained in the uncountable

case. Recently, Y. Zelenyuk [17] studied this Result and gave some answers of it

when X = ⊕κZ2 where X is discrete semigroup and κ an infinite cardinal . Also

he show that the smallest ideal of βX is not closed.

This thesis consists of four chapters.

Chapter 1 contains 2 sections, in section 1 we present a brief summary of the

notations for abstract algebra that we use and in section 2 we give a basic infor-

mation for topological space which will be used in the remainder of the thesis.

Chapter 2 is devided into 3 sections, in section 1 we give some remarks on Boolean

algebra and the relation between it and stone space. In section 2 we study stone-

Čech compactifiction. In section 3 we discuss compactification of discrete space

Chapter 3 also contains 3 sections .In Section 1, we consider the relation between

subsemigroups of βG and left invariant topologies on G. In particular, we give a

sufficient condition for a subsemigroup of βG to be the ultrafilter semigroup of a

regular left invariant topology. In Section 2, we study local homomorphisms of

left topological groups. They induce homomorphisms of ultrafilter semigroups.

We show that local homomorphisms enjoy a remarkable property of projectivity

type. In Section 3, using results of Sections 2 and 3, we show that if κ is infinte

cardinal and G = ⊕Gα where Gα is nontrivial group and α < κ then H contains

no nontrivial finite group . Finally Chapter 4 contains 2 sections. In Section 1

we show that there are 2c discrete copies of Z in each of the maximal groups in

the smallest ideal, and that any two of these meet only in the identity. In Section

3 we show that the same results holds for the free group on 2 generators. Since

the free group on 2 generators contains copies of Z, the results of Section 2 are a

corollary of those of Section 3.
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Chapter 1

Preliminaries

In this chapter, we give a basic information which will be used in the remainder

of the thesis.

1.1 Algebra

Definition 1.1.1. [4] A semigroup is a pair (S, ∗) where S is a nonempty set and

∗ is a binary associative operation on S.

Formally a binary operation on S is a function ∗ :S×S → S and the operation

is associative if and only if (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x,y, and z in S.

we say S is closed under ∗ if x ∗ y ∈ S whenever x, y ∈ S.

Example 1.1.2. [4] Each of the following is a semigroup.

(a) The set of natural numbers (N) under addition or multiplication is a semi-

group.

(b) The set of real numbers (R) under addition or multiplication is a semigroup.

(c) (S, ∗) where S is a nonempty set and x ∗ y = y for all x, y ∈ S

(d) (S, ∗) where S is a nonempty set and x ∗ y = x for all x, y ∈ S.

(e) (N,∨) where x ∨ y = max{x, y}.

3



The semigroups of Example 1.1.2 (c) and (d) are called respectively right zero

and left zero semigroups .

Definition 1.1.3. [4] Let S be a semigroup,

(a) S is commutative if and only if xy = yx for all x, y ∈ S.

(b) The center of S is {x ∈ S : for all y ∈ S, xy = yx}.

(c) Given x ∈ S, the function λx : S → S is defined by λx(y) = xy.

(d) Given x ∈ S, the function ρx : S → S is defined by ρx(y) = yx.

(e) L(S) = {λx : x ∈ S}.

(f) R(S) = {ρx : x ∈ S}.

Definition 1.1.4. [4] Let S be a semigroup

(a) An element x ∈ S is called left (respectively, right) cancelable if for all

y, z ∈ S, and xy = xz, (respectively, yx = zx) implies y = z.

(b) If each element x ∈ S is left ( respectively, right) cancelable, then S is called

left (respectively, right) cancellative.

(e) If S is both left cancellative and right cancellative we say S is cancellative .

Example 1.1.5. [18]

(a) The set of natural number under addition is cancellative semigroup.

(b) A left zero semigroup is right cancellative but not left cancellative.

(c) A right zero semigroup is left cancellative but not right cancellative.

(d) Let S (respectively, Mn) be the set of all square matrices of order n with real

entries (respectively, complex entries). Then under matrix multiplication,

S is semigroup. Let A be any element in S. If A is nonsingular, then A is

both left cancellable and right cancellable. If A is singular, then A is neither

left cancellable nor right cancellable.
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Remark 1.1.6. [4] Let S be a semigroup. Then (L(S), ◦) and (R(S), ◦) form

semigroups, where ◦ is the operation of composite functions.

Definition 1.1.7. [4] Let S be a semigroup. Then

(a) an element x ∈ S is an idempotent if xx = x

(b) the set of all idempotents in S is denoted by E(S); that is, E(S) = {x ∈

S : xx = x},

Example 1.1.8. (a) The set of idempotents of the semigroup (N,∨) is E(N) =

N.

(b) The set of idempotents of the left zero semigroup is E(S) = S.

(c) The only idempotent in (N, .) is 1

Definition 1.1.9. A group (G, ∗) is a nonempty set G together with a binary

operation ∗ on G such that the following conditions hold:

(a) Associativity: For all a, b, c ∈ G, we have a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(b) Identity: G contains an element e (called the identity) such that a ∗ e =

e ∗ a = a for all a ∈ G.

(c) Inverses: For each a ∈ G there exusts b ∈ G (called an inverse of a) such

that a ∗ b = b ∗ a = e. We will denote b by a−1.

The order of group G is the number of elements in G.

Definition 1.1.10. [4] Let S be a semigroup,and T ⊆ S. Then we say

(a) T is a subsemigroup of S if it is a semigroup under the restriction of the

operation of S.

(b) T is a subgroup of S if S is a group, and T is a group under the restriction

of the operation of S.

Given subsets A and B of a semigroup S, by AB we of course mean {ab : a ∈ A

and b ∈ B}
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Definition 1.1.11. Let G be a group, and T subgroup of G. Then

(a) T is called a normal subgroup of G, if aT = Ta for any a ∈ G.

(b) if T is normal in G, then the set G/T = {aT : a ∈ G} is a group under the

operations (aT )(bT ) = (ab)T. This group is called the quotient group of G

by T.

Definition 1.1.12. Let ϕ be a function from a set G to a set S. Then

(a) ϕ is called one to one or monomorphism, if for every a1, a2 ∈ G, ϕ(a1) =

ϕ(a2) implies a1 = a2.

(b) ϕ is said to be onto or surjective, if for every b in S, there is at least one a

in G such that ϕ(a) = b.

(c) If G and S are groups, then ϕ is called a homomorphism from G to S if it

presrves the group operation; that is, ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ A.

(d) ϕ is called an isomorphism from G to S if it is one to one, onto, and a

homorphism.

(e) If ϕ is a homorphism from G to S, then the kernal of ϕ is the set {x ∈ G :

ϕ(x) = e, where e is the identity of S. The Kernal ϕ is denoted by Kerϕ.

Note that Kerϕ is a normal subgroup of A.

Theorem 1.1.13. First isomorphism Theorem

Let ϕ be a group homomorphism from G to S. Then the function ψ : G/Kerϕ→

ϕ(G) given by ψ(gKerϕ) = ϕ(g) is an isomorphism.

Definition 1.1.14. [4] Let S be a semigroup and let L,R, I be a nonempty

subsets of S. Then

(a) L is left ideal of S if SL ⊆ L

(b) R is right ideal of S if RS ⊆ R
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(c) I is an ideal (sometimes, we say two sided ideal) of S if and only if I is

both left ideal and right ideal of S.

Any left (respectively, right) ideal L is a subsemigroup of S since SL ⊆ L

(respectively, LS ⊆ L.)

Example 1.1.15. [1]

(a) In the semigroup (N, .) the set of all even numbers is an ideal.

(b) In the multiplicative semigroup Mn of all complex square matrices of order

n. For a given fixed column, Let S be the set of all matrices in which the

entries of the fixed column are equal to zero. Then S is left ideal but not

right if n > 1.

Definition 1.1.16. [4] Let S be a semigroup, L is left ideal of S, and R is right

ideal of S. Then

(a) L is a minimal left (respectively, right) ideal of S if whenever J is left

(respectively, right) ideal of S and J ⊆ L, we have J = L.

(b) S is left (respectively, right) simple if and only if S is a minimal left (re-

spectively, right) ideal of S.

(e) S is simple if it is both left simple and right simple .

Note 1.1.17. If S is simple, then the only ideal of S is S itself.

Proof. Let L be an ideal of S such that L ⊂ S. Since S is simple then S is minimal

ideal of S. so, L = S.

In a semigroup S, an element z is called a zero element if z ∗ s = s ∗ z = z,

for all s ∈ S.

Example 1.1.18. (a) Semigroups with zero has only one minimal left ( right

- two sided ) ideal of S namely the trivial one {0}

(b) (Z,+) has no minimal ideal .
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(c) Let S = {a, b, c, d} where a,b,c , and d are distinct and let S has the following

multiplicative table.Then S is simple but neither left simple nor right simple.

. a b c d

a a b a b

b a b a b

c c d d c

d c d d c

Clearly S is semigroup . Also {a, b} and {c, d} are right ideals of S and

{a, c} and {b, d} are left deals of S.

Lemma 1.1.19. [4] Let S be a semigroup,

(a) suppose L1 and L2 be left ideals of S. Then L1 ∩ L2 is a left ideal of S if

and only if L1 ∩ L2 6= φ.

(b) if x ∈ S, then xS is a right ideal, Sx is a left ideal, and xSx is an ideal.

(c) if L is a left ideal of S and, R is a right ideal of S, then L ∩R 6= φ.

Proof. [4]

(a) Since L1∩L2 is a left ideal of S then L1∩L2 6= φ. Conversely, let L1∩L2 6= φ,

since L1 is a left ideal then S(L1 ∩ L2) ⊆ SL1 ⊆ L1 so (L1 ∩ L2) is a left

ideal.

(b) Since x ∈ S then xS 6= φ. Also xSS ⊆ xS so xS is right ideal of S.

In the same way Sx is a left ideal and xSx is an ideal of S .

(c) Suppose x ∈ L and y ∈ R. Then we have that yx ∈ L because L is left ideal

and yx ∈ R because R is right ideal.

Lemma 1.1.20. [4] Let S be a semigroup, L a left ideal of S, and T a left ideal

of L. Then
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(a) for all t ∈ T, Lt is a left ideal of S and Lt ⊆ T.

(b) if L is a minimal left ideal of S, then T = L. So minimal left ideals are left

simple.

(c) if T is a minimal left ideal of L, then T is a left ideal of S.

Proof. [4]

(a) S(Lt) = (SL)t ⊆ Lt and Lt ⊆ LT ⊆ T.

(b) Pick any t ∈ T . By (a), Lt is a left ideal of S and Lt ⊆ T ⊆ L, so Lt = L.

Thus T = L.

(c) Pick any t ∈ T . By (a), Lt is a left ideal of S, so Lt is a left ideal of L. Since

Lt ⊆ T, we have that Lt = T. Therefore, ST = S(Lt) = (SL)t ⊆ Lt = T.

Of course, the right-left switch of the above lemma is hold. That is; if R is a

right ideal of S and T is a right ideal of S, moreover if either R is minimal in S

or T is minimal in R, then T is right ideal of S.

Lemma 1.1.21. [4] Let S be a semigroup. If I is an ideal on S, and if L is a

minimal left ideal of S, then L ⊆ I.

Proof. Since I is an ideal of S then S(IL) = (SI)L ⊆ IL. So IL is a left ideal of

S. Also IL ⊆ L because L is a left ideal. But L is minimal, so IL = L. Therefore

L = IL ⊆ I because I is an ideal.

Theorem 1.1.22. [4] Let S be a semigroup and L a minimal left ideal of S, and

T ⊆ S. Then T is a minimal left ideal of S if and only if there is some a ∈ S

such that T = La.

Proof. Suppose that T is a minimal left ideal of S and pick a ∈ T. Then SLa ⊆ La

and La ⊆ ST ⊆ T so La is a left ideal of S contained in T so La = T.

Conversely, Let a ∈ S such that T = La. Since SLa ⊆ La then La is a left ideal

of S. Assume that B is a left ideal of S and B ⊆ La. Let A = {s ∈ L : sa ∈ B},
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then A ⊆ L. Since B is non empty then A 6= φ. We claim that A is a left ideal

of S, to see this let s ∈ A and pick t ∈ S. Then sa ∈ B. But B is a left ideal so,

tsa ∈ B. since s ∈ L and L is left ideal then ts ∈ L. Hence ts ∈ A. Since L is

minimal and A ⊆ L then A = L. Therefore La ⊆ B which implies La = B. Since

B was arbitrary then T = La is a minimal left ideal.

Corollary 1.1.23. Let S be a semigroup and L a minimal left ideal of S. Then

(a) there is some a ∈ S such that L = La.

(b) if there is a minimal left ideal T of S, then L = Tb = L(ab) for some a and

b in S.

Lemma 1.1.24. [4] Let S be a semigroup and let K be an ideal of S. If K is

minimal in {J : J is an ideal of S} and I is an ideal of S, then K ⊆ I.

Proof. [4] By Lemma 1.1.15 (c), K∩I 6= φ. So we have K∩I is an ideal contained

in K. Hence K ∩ I = K.

By a bove lemma there is at most one minimal ideal in a semigroup , we called

it the smallest ideal.

Definition 1.1.25. [4] Let S be a semigroup. If the smallest ideal exists in S,

we denote it by K(S) .

Theorem 1.1.26. [4] Let S be a semigroup with a minimal left ideal, then K(S)

exists and K(S) =
⋃
{L : L is a minimal left ideal of S}.

Proof. [4] Let I =
⋃
{L : L is a minimal left ideal of S}. By Lemma 1.1.21, if

J is any ideal of S, then any minmal left ideal L of S is contained in J. Hence,

I ⊆ J, so it is suffices to show that I is an ideal of S. We have that I 6= φ by

assumption, so pick x ∈ I and s ∈ S. Take a minimal left ideal L of S such that

x ∈ L. Then sx ∈ L ⊆ I. Also by Theorem 1.1.22, Ls is a minimal left ideal of S

so LS ⊆ I while xs ∈ Ls.

There are many subgroups do not have a smallest ideal. For example (N,+)

and (N, .)
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Lemma 1.1.27. [4] Let S be a semigroup.

(a) Let L be a left ideal of S. Then L is minimal if and only if Lx = L for every

x ∈ L.

(b) Let I be an ideal of S. Then I is the smallest ideal if and only if IxI = I

for every x ∈ I.

Proof. (a) If L is minimal and x ∈ L, then Lx is a left ideal of S and Lx ⊆ L

so Lx = L. Now assume Lx = L for every x ∈ L and let J be any ideal of

S with J ⊆ L. Pick x ∈ J. Then L = Lx ⊆ LJ ⊆ J ⊆ L, So J = L. But J

was arbitrary then L is minimal.

(b) Let I be the smallest ideal and x ∈ I, then IxI ⊆ I. Since IxI is an ideal

of S and I is the smallest ideal so I ⊆ IxI.

Conversely, suppose that IxI = I for every x ∈ I and let J be any ideal of

S with J ⊆ I. Pick x ∈ J. Then I = IxI ⊆ IJI ⊆ J because J is an ideal

so I ⊆ J. Thus J = I, But J was arbitrary then I is minimal.

Theorem 1.1.28. [4] Let S be a semigroup. If L is a minimal left ideal of S and

R is a right ideal of S, then K(S) = LR.

Proof. First we will show that LR is an ideal of S. Since L 6= φ and R 6= φ then

LR 6= φ. L is a left ideal of S, so SL ⊆ L, and SLR ⊆ LR. Also, since R is a

right ideal of S then RS ⊆ R so, LRS ⊆ LR. Hence LR is an ideal of S.

We will use Lemma 1.1.27 to show that K(S) = LR so, let x ∈ LR. Since L is

a left ideal then SL ⊆ L which implies SLRxL ⊆ LRxL. Since LRx ⊆ S then

LRxL ⊆ SL ⊆ L So, LRxL is a left ideal of S which is contained in L .But L is

minimal so LRxL = L and hence LRxLR = LR. So, from Lemma 1.1.27 part b

we get K(S) = LR.

Corollary 1.1.29. Let S be a semigroup. If L is left ideal of S and R is a

minimal a right ideal of S, then K(S) = LR.
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Proof. As in a bove theorem LR is an ideal. let x ∈ LR. Since R is a right ideal

then RS ⊆ R which implies RxLRS ⊆ RxLR. Since xLR ⊆ S then RxLR ⊆

RS ⊆ R So, RxLR is a right ideal of S which is contained in R .But R is minimal

so RxLR = R and hence LRxLR = LR. So, from Lemma 1.1.27 part b we get

K(S) = LR.

Theorem 1.1.30. [4] Let S be a semigroup and assume there is a minimal left

ideal of S which has an idempotent .Then every minimal left ideal has an idem-

potent.

Proof. see [4, Theorem 1.56].

Theorem 1.1.31. [4] Let S be a semigroup and assume there is a minimal left

ideal of S which has an idempotent. Then there is a minimal right ideal of S

which has an idempotent.

Proof. see [4, Lemma 1.57].

Lemma 1.1.32. [4] Let S be a semigroup and assume there is a minimal left ideal

of S which has an idempotent. Then all minimal left ideal of S are isomorphic.

Proof. see [4, Lemma 1.62].

Definition 1.1.33. A group G is called cyclic if there exists an element g in G

such that G =< g > = {gn|n is an integer} and g is called a generator of the

group.

If G is a cyclic group of order n then every subgroup of G is cyclic. Moreover,

the order of any subgroup of G is a divisor of n and for each positive divisor k of

n the group G has exactly one subgroup of order k.

Examples 1.1.34. (a) The group Z under addition is infinite cyclic group gen-

erated by 1 and −1.

(b) The set Zn under addition mod n is finite cyclic group of order n.
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Definition 1.1.35. [18] Let f : X → Y and g : Y → X be two functions such

that the composition f ◦ g : Y → Y is the identity function on Y , then g is a

coretraction .

In other words g has left inverse function.

1.2 Topology

In this section, we give a basic information for topological space which will be

used in the remainder of the thesis. See [14] and [12] for more details and any

unfamiliar topological facts encountered in this section.

Definition 1.2.1. A topological space is a set X together with τ , a collection of

subsets of X, satisfying the following axioms:

(a) φ and X are in τ.

(b) The union of any members of τ is also in τ.

(c) The intersection of two sets in τ is also in τ.

Using induction, the intersection of any finite members of τ is also in τ.

Usually, a topological space is denoted by (X, τ) or simply by X (if there is

no confusion), where τ is a topology on X.

The elements of τ are called open sets, and their complements in X are called

closed sets. A set U may be open, closed, both open and closed, or neither

open nor closed. A set that is both closed and open is called a clopen set.

The intersection of any finite number of open sets is open, but in general the

intersection of any number of open sets need not be open. Dually, the union of

any finite number of closed sets is closed, but in general the union of any number

of closed sets need not be closed.

Examples 1.2.2. (a) For any set X the collection τ = {φ,X} forms a topology

called the trivial topology. The collection τ = P(X) the power set of X

forms a topology called the discrete topology.
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(b) Let X = {1, 2, 3, 4}. The collection τ = {φ, {2}, {1, 2}, {2, 3}, {1, 2, 3}, {1, 2, 3, 4}}

of six subsets of X forms another topology on X. item [(c)] Let X = Z, the

set of integers, and τ the collection of finite subsets of the integers together

with Z itself, Then τ is not a topology, since the union of all singleton sets

not including zero is not in τ.

Definition 1.2.3. If (X, τ) is a topological space and A ⊆ X, the collection

τ
A

= {G ∩ A : G ∈ τ} forms a topology on A, called the relative topology on A.

The topological space (A, τ
A

) is called a subspace of X

Definition 1.2.4. If X is a topological space and x ∈ X . A neighborhood of x

is a set U which contains an open set V containing x.

Definition 1.2.5. A base B for a topological space X with a topology τ is a

collection of open sets in τ such that every open set in τ can be written as a

union of elements of B. We say that the base generates the topology τ .

Example 1.2.6. For any X, the collection {{x} : x ∈ X} is a base for the

discrete topology on X.

Proposition 1.2.7. Let (X, τ) be a topological space. A family B of open subsets

of X is a basis for τ if and only if for any open set U and any x ∈ U, there is

A ∈ B such that x ∈ A ⊆ U.

Definition 1.2.8. Let A be a subset of topological Space X. A point x ∈ X is

called a limit point of A if every open set U containing x contains a point of A

different from x.

Definition 1.2.9. If X is a topological space and E ⊂ X, the closure of E in X

is the set

E =
⋂
{K ⊆ X | K is closed and E ⊆ K}.

Clearly E is closed set. In fact it is the smallest closed set containing E.

Moreover, A is closed set if and only if A = A. We denotes A′ to be the set of all

limit points of X. So we have that A = A ∪ A′.
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Definition 1.2.10. Let A be a subset of a topological space X. Then A is said

to be dense in X if A = X. Equivalently, A is dense if A ∩ U 6= φ for each U ∈ τ

and U 6= φ.

For example, the set of rational numbers Q is a dense subset of R.

In general if A ⊆ X then x ∈ A if and only if for any open set U containing x,

we have that U ∩ A 6= φ.

Definition 1.2.11. Let (X, τ1) and (Y, τ2) be topological spaces and f is a func-

tion from X into Y. Then f is said to be continuous function if for each U ∈ τ2,

f
−1

(U) ∈ τ1.

Theorem 1.2.12. Suppose Y ⊆ Z and f : X → Y. Then f is continuous as a

map from X to Y if and only if it is continuous as a map from X to Z.

Definition 1.2.13. Let X and Y be a topological spaces. A function f from X

to Y is called a homeomorphism if f is one to one, onto, continuous, and f−1 is

also continuous. In this case, we say X and Y are homeomorphic.

Example 1.2.14. The open interval (a, b) in R is homeomorphic to (0, 1). One

homeomorphism being f(x) = (x− a)/(b− a).

Definition 1.2.15. A topological space X is T1 space if and only if whenever x

and y are distinct points in X. there is two open sets U and V such that x ∈ U,

y /∈ U and y ∈ V, x /∈ V

If X is T1 space, then each singleton set in X is closed.

Example 1.2.16. Let X be an infinite set. Define τ = {A ⊆ X : A = φ or X \A

is finite} (called a cofinite topology). Then X is T1 topological space.

Definition 1.2.17. A topological space X is said to be Hausdorff or (T2 space)

if for any pair of distinct points a, b in X there exists open sets U and V such

that a ∈ U , b ∈ V and U ∩ V = φ.

Let X be an infinite set with cofinite topology then X is Hausdroff space.

Moreover, any Hausdroff Space is T1 but the converse not true .
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Definition 1.2.18. Let A be a subset of a topological space X. Then A is said

to be compact if for every set I and every family of open sets Oα, α ∈ I, such

that A ⊆ ∪α∈IOα, there exist a finite subfamily Oα1, Oα2, ..., Oαn such that A ⊆

Oα1 ∪Oα2 ∪ ... ∪Oαn.

Example 1.2.19. The unit interval [0,1] is compact Hausdroff Space.

Theorem 1.2.20. (a) Every closed subset of a compact space is compact.

(b) A compact subset of Hausdroff space is closed.

Corollary 1.2.21. A set A in a compact Hausdroff space is closed if and only if

it is compact.

Corollary 1.2.22. Any finite subset of compact Hausdroff space is closed and

compact.

Definition 1.2.23. A topological space X is said to be disconnected if it is the

union of two disjoint nonempty open sets. Otherwise, X is said to be connected.

A subset A of a topological space X is said to be connected if it is connected

as a subspace.

Definition 1.2.24. [15] A space X is said to be totally disconnected if the clopen

sets separate the points of X. That is; for any two distinct points of X, there is a

clopen set in X containing one of these two points and not containing the other.

Equivalently, a topological space X is totally disconnected space if the only

connected subsets of X are only the singleton sets.

Examples 1.2.25. [18]

(1) Every discrete spaces is totally disconnected.

(2) The rational numbers with respect to the relative topology induced by the

Euclidean topology of R is totally disconnected.

(3) The irrational numbers with respect to the relative topology induced by the

Euclidean topology of R is totally disconnected.
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Theorem 1.2.26. A compact Hausdorff space is totally disconnected if and only

if the clopen sets form a base for open sets.

Proof. suppose thatX is a compact Hausdorff space which is totally disconnected,

and let A be any open set in X. If A = φ trivial case, so let A 6= φ and pick

x ∈ A. Since X is totally disconnected space, then for all y ∈ Ac there is a clopen

set Uy containing y but not x. Thus Ac ⊆
⋃
y∈Ac Uy which is an open cover of

Ac. Since X is a compact Hausdroff space, and Ac is closed, then Ac is compact.

Pick finite subfamily of {Uyi : y ∈ Ac} such that Ac ⊆
⋃n
i=1 Uyi . Since x /∈ Uy for

all y ∈ Ac, then x /∈
⋃n
i=1 Uyi . Thus x ∈ (

⋃n
i=1 Uyi)

c =
⋂n
i=1 U

c
yi

where it is clopen

supset. Also,
⋂n
i=1 U

c
yi
⊆ A. To show this, let t ∈

⋂n
i=1 U

c
yi
, then t /∈

⋃n
i=1 Uyi , so

t /∈ Ac which give t ∈ A.

Conversely, suppose that the clopen sets form a base for open open sets, and let

x, y be two distinct points of X. Since X is compact, then {x} is a closed set

so {x}c is open set containing y, thus from assumption there exists a clopen set

containing y and not containing x. So, X is totally disconnected.

Theorem 1.2.27. A one to one continuous map from a compact space X onto

a Hausdroff space Y is a homeomorphism.

Definition 1.2.28. (1) A topological space X is called a regular space if and

only if whenever A is closed in X and x /∈ A, then there are disjoint open

sets U and V with x ∈ U and A ⊆ V. A T1 regular space is T3 space.

(2) A topological space X is called a completely regular space if for any closed

set F and any point x that does not belong to F , there is a continuous

function f from X to the real line R such that f(x) is 0 and f(y) is 1 for

every y in F . That is; X is completely regular if x and F can be separated

by a continuous function, where F is closed and x /∈ F.

X is a Tychonoff space, or τ3 space if and only if it is both completely regular

and Hausdorff .
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Example 1.2.29. [18]

(1) A trivial space is always T3, and a non-trivial space is regular but not T3

space.

(2) The real line R is completely regular space under the Euclidean topology. In

fact R is Tychonoff.

(3) Any compact Hausdorff space is completely regular, and hence a Tychonoff.

Theorem 1.2.30. The following are equivalent for a topological space X

(a) X is regular.

(b) if U is open in X and x ∈ U ,then there is an open set V containing x such

that V ⊂ U .

Remark 1.2.31. Any subspace of a completely regular space is completely reg-

ular.

Definition 1.2.32. [4]

(a) A right topological semigroup is a triple (S, ·, τ) where (S, ·) is a semigroup,

(S, τ) is a topological space, and for all x ∈ S, ρx : S → S is continuous.

(b) A left topological semigroup is a triple (S, ·, τ) where (S, ·) is a semigroup,

(S, τ) is a topological space , and for all x ∈ S, λx : S → S is continuous.

(c) A semitopological semigroup is a right and left topological semigroup.

(d) A topological semigroup is a triple (S, ·, τ) where (S, ·) is a semigroup, (S, τ)

is a topological space, and · : S × S → S is continuous.

(e) A topological group is a triple (S, ·, τ) such that (S, ·) is a group, (S, τ) is

a topological space, · : S × S → S is continuous, and In : S → S is

continuous (where In(x) = x−1).
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Each topological group is a topological semigroup, each topological semigroup

is a semitopological semigroup and each semitopological semigroup is both a left

and right topological semigroup.

Any semigroup with the discrete topology which is not group provides an example

of a topological semigroup which is not a topological group.

Definition 1.2.33. [4] Let S be a right topological semigroup. The topological

center of S is the set Λ(S) = {x ∈ S : λx is continuous }.

Thus, a right topological semigroup S is a semitopological semigroup if and

only if Λ(S) = S. Clearly any topological group is a semitopological semigroup.

Note that the center of a right topological semigroup in algebraic sense is con-

tained in its topological center.

Theorem 1.2.34. [4] Let S be a compact right topological semigroup. Then

(a) E(S) 6= φ.

(b) Every left ideal of S contains a minimal Left ideal, minimal left ideals are

closed, and each minimal left ideal has an idempotent.

(c) S has a smallest ideal K(S) which is the union of all minimal left ideals of

S and also the union of all minimal right ideals of S. Each of {Se : e ∈

E(K(S))}, {eS : e ∈ E(K(S))}, and {eSe : e ∈ E(K(S))} are partitions

of K(S).

Theorem 1.2.35. [4] The intersection of a minimal right ideal and a minimal

left ideal is a group, and all these groups are isomorphic.

Remark 1.2.36. [4] A compact cancellative right topological semigroup is a

group.

Definition 1.2.37. A space X is called extremally disconnected if the closure

of an open set is open or, equivalently, if the closures of disjoint open sets are

disjoint.

Every discrete space is extremally disconnected.
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Definition 1.2.38. A topological space X is called zero-dimensional if it has a

base of clopen sets.

Definition 1.2.39. Let Ω be uncountable well ordered set with largest element

w1 with the property that if α ∈ Ω with α < w1 then {β ∈ Ω|β ≤ α is countable}.

The elements of Ω are ordinals with w1 being the first uncountable ordinal and

the set Ω0 = Ω− {w1} is the set of countable ordinals.

Definition 1.2.40. If α and β are ordinals and α < β, then we say α is prede-

cessor of β and β is successor of α

β is called an immediate successor of α if β is the smallest ordinal larger than

α.

Every ordinal α has immediate successor ordinal often denoted by α + 1.

Definition 1.2.41. A limit ordinal is an ordinal number which have predecessor

without immediate predecessor. It is equal to the supremum of all the ordinals

below it, but is not zero.

Definition 1.2.42. A family P of nonempty sets is a partition of X if

(a) The union of the elements of P is equal to X. (The elements of P are said

to cover X.)

(b) The intersection of any two distinct elements of P is empty. (We say the

elements of P are pairwise disjoint.)

If X is a space and if each set in P is closed, then we say P is a closed partition

of X.
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Chapter 2

Compactification of discrete

Space

In this chapter we are mainly interested in the compactifications of a discrete

space. If S is a finite discrete space then S itself is a compactification of S and

hence we consider infinite discrete spaces only. Throughout this chapter S denotes

an infinite discrete space. In the following we construct several compactifications

of S.

2.1 Stone representation Theorem

Definition 2.1.1. [13] A Boolean algebra is a non empty set A together with

two binary operations ∨ and ∧ (on A), a unary operation ′ and two distinguished

elements 0 and 1, satisfying the following axioms: For p, q, r ∈ A,

(1) 0′ = 1 1′ = 0

(2) p ∧ 0 = 0 p ∨ 1 = 1

(3) p ∧ 1 = p p ∨ 0 = p

(4) p ∧ p′ = 0 p ∨ p′ = 1

(5) (p′)′ = p
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(6) p ∧ p = p p ∨ p = p

(7) (p ∧ q)′ = p′ ∨ q′ (p ∨ q)′ = p′ ∧ q′

(8) p ∧ q = q ∧ p p ∨ q = q ∨ p

(9) p ∧ (q ∧ r) = (q ∧ p) ∧ r p ∨ (q ∨ r) = (q ∨ p) ∨ r

(10) p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

Examples 2.1.2. (1) [13]The class of all subsets of a set X is a Boolean al-

gebra under the operations of ∨ =union, ∧ =intersection and ′ = comple-

mentation , the 0 element is the empty set and the 1 element is the set X

itself.

(2) A Boolean algebra with only one element is called a trivial Boolean algebra

(3) [18]The simplest non trivial Boolean algebra has only two elements 0, 1 ,

and is defined by the rules:

∧ 0 1

0 0 0

1 0 1

∨ 0 1

0 0 1

1 1 1

a 0 1

a′ 1 0

(4) [18] The set of all subsets of X that are either finite or cofinite is a Boolean

algebra under the same operation of part 1.

Definition 2.1.3. [13] A Boolean subalgebra of a Boolean algebra A is a subset

B of A such that B, together with the 0 and 1 elements is a Boolean algebra

under the same operation of A. The algebra A is called a (Boolean) extension of

B.

Example 2.1.4. [13] The set of all subsets of X that are either finite or cofinite

is a Boolean subalgebra of the set of all subsets of X that are either countable or

cocountable of X.

Every Boolean subalgebra B has the element 1 because if p ∈ B then P ∨P ′ =

1 ∈ B. Also p ∧ P ′ = 0 ∈ B so, the unit and zero elements in B is the same as

the unit and zero in A.
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[13]To be a Boolean subalgebra it is not enough to be a subset that is a Boolean

algebra in its own right, however natural the Boolean operations may appear.

The Boolean operations of a subalgebra, by definition, must be the restrictions

of the Boolean operations of the whole algebra.

To illustrate the situation, let Y be a non-empty subset of a set X. Both P(X)

and P(Y ) are Boolean algebras in a natural way and clearly every element of

P(Y ) is an element of P(X). Since, however, the unit of P(X) is X, whereas

the unit of P(Y ) is Y, it is not true that P(Y ) is a Boolean subalgebra of P(X).

Another reason why it is not true is, of course, that complementation in P(Y ) is

not the restriction of complementation in P(X).

Definition 2.1.5. [13] Let A be a non-empty collection of subsets of X that is

closed under intersection, union, and complement. That is; if P and Q are in A,

then so are P ∩Q, P ∪Q, and P ′. Then A is a Boolean algebra which is called a

field of sets.

Since A contains at least one element, say P then P ′ ∈ A it follows that

P ∩ P ′ = φ ∈ A, so A contains φ and X. Therefore, in a field of sets, the zero

element is φ and the 1 element is X.

Examples 2.1.6. (1) [18] The set of all subsets of X that are either finite or

cofinite is a field of sets.

(2) If X is topological space, then the set CO(X) of all clopen subsets of X is

a field of sets.

Definition 2.1.7. [13] A Boolean homomorphism is a mapping f from a Boolean

algebra B to, a Boolean algebra A such that :

(1) f(p ∧ q) = f(p) ∧ f(q)

(2) f(p ∨ q) = f(p) ∨ f(q)

(3) f(p′) = (f(p))′

whenever p and q are in B.
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we shall usually write f(p)′ instead of (f(p))′.

Definition 2.1.8. [13] The kernel of a homomorphism f from a Boolean algebra

B to a Boolean algebra A is the set of elements in B that map to 0 in A. In

symbols, the kernel of f is defined by

Ker(f) = f−1({0}) = {p ∈ B : f(p) = 0}.

Note that if Ker(f) = {0}, then f is one to one.

Example 2.1.9. [13] consider a field B of subsets of a set X , and let x0 be an

arbitrary point of X. For each set P in B, let

f(P ) =

 1, x0 ∈ P

0, x0 /∈ P

To prove that the mapping f is a 2-valued homomorphism on B, we will verify

identities (1),(2) and (3).

The definition of f , and the definitions of the Boolean operations in a field of sets

and in the Boolean algebra consists only the elements {0, 1}, justify the following

equivalences:

f(P ∩Q) = 1 if and only if x0 ∈ P ∩Q,

if and only if x0 ∈ P and x0 ∈ Q,

if and only if f(P ) = 1 and f(Q) = 1,

if and only if f(P ) ∧ f(Q) = 1;

So,

f(P ∩Q) = f(P ) ∧ f(Q).

Similarly,

f(P ∪Q) = 1 if and only if x0 ∈ P ∪Q,

if and only if x0 ∈ P or x0 ∈ Q,

if and only if f(P ) = 1 or f(Q) = 1,
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if and only if f(P ) ∨ f(Q) = 1;

So,

f(P ∪Q) = f(P ) ∨ f(Q).

Similarly,

f(P ′) = 1 if and only if x0 ∈ P ′,

if and only if x0 /∈ P,

if and only if f(P ) = 0,

if and only if f(P )′ = 1;

So,

f(p′) = (f(p))′

the kernal of f is

Ker(f) = {p ∈ B : f(p) = 0}

Ker(f) = {p ∈ B : x0 /∈ P}

Definition 2.1.10. [13] We define a binary relation ≤ in a Boolean algebra by

p ≤ q or q ≥ p if p ∧ q = p, or equivalently, p ∨ q = q. In this case we say that p

is below q, or q is above p .

As a specail case, and for sets, we say P ≤ Q if P ∩ Q = P (P ∪ Q = Q) in

the case when P ⊆ Q.

The set A of all subelements of p0, consists of all elements p with p ≤ p0,

Definition 2.1.11. [13] A (Boolean) filter in a Boolean algebra B is a subset N

of B such that

(1) 1 ∈ N

(2) if p ∈ N and q ∈ N , then p ∧ q ∈ N

(3) if p ∈ N and q ∈ B, then p ∨ q ∈ N .

Condition (1) can be replaced by the condition that N be non-empty. Con-

dition (3) can be replaced by (4) if p ∈ N and p ≤ q, then q ∈ N
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Definition 2.1.12. [13] The filter generated by a subset E of a Boolean algebra

B is defined to be the intersection of the filters that include E. (There is always

one such filter, namely B.) In other words, it is the smallest filter that includes

E . A filter N is principal if it is generated by a single element p. In this case

N = {q ∈ B : p ≤ q}.

Definition 2.1.13. [13] A maximal filter, or an ultrafilter -as it is often called-is

a proper filter that is not properly included in any other proper filter.

Remark 2.1.14. [19]

(a) Every filter of Boolean algebra A is a subset of some ultrafilter.

(b) If A is a Boolean algebra then any ultrafilter of A consists exactly one of

the elements a and a′ for each element a of A.

Theorem 2.1.15. [18] Let B denots a Boolean algebra and F an ultrafiter in it,

then for all a, b ∈ B if a ∨ b ∈ F then either a ∈ F or b ∈ F.

Proof. Let B be a Boolean algebra and F a proper filter in it. Suppose to contrary

that a∨ b ∈ F, while a /∈ F and b /∈ F. Then by above remark a′ ∈ F and b′ ∈ F,

and hence (a′ ∧ b′) ∈ F ⇒ (a ∨ b)′ ∈ F contradiction.

Theorem 2.1.16. [11] Let U be a Boolean algebra and let S(U) be the set of all

ultrafilters on U. For each x ∈ U put λ(x) = {p ∈ S(U) : x ∈ p}. If a topology τ

is assigned to S(U) by letting {λ(x) : x ∈ U} be an open base for τ then (S(U), τ)

is a compact Hausdorff totally disconnected space. The set S(U), topologized as

above, is called the Stone space of U.

Theorem 2.1.17. [18]Stone representation Theorem

Every boolean algebra is isomorphic to the algebra of clopen supset of its stone

space

Proof. Let f : U → P(S(U)) defined by f(x) = λ(x). To prove that f is homo-
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morphism, let x and y be elements in U then :

f(x ∨ y) = λ(x ∨ y) = {p ∈ S(U) : x ∨ y ∈ p}

= {p ∈ S(U) : x ∈ p ∨ y ∈ p}

= {p ∈ S(U) : x ∈ p} ∪ {p ∈ S(U) : y ∈ p}

= λ(x) ∪ λ(y)

= f(x) ∪ f(y).............................................(1)

The first and last equalities use the definition of f, the second uses the Theorem

2.1.15, the third uses the definition of union. Now,

f(x ∧ y) = λ(x ∧ y) = {p ∈ S(U) : x ∧ y ∈ p}

= {p ∈ S(U) : x ∈ p ∧ y ∈ p}

= {p ∈ S(U) : x ∈ p} ∩ {p ∈ S(U) : y ∈ p}

= λ(x) ∩ λ(y)

= f(x) ∩ f(y).............................................(2)

Similarly,

f(x′) = λ(x′) = {p ∈ S(U) : x′ ∈ p}

= {p ∈ S(U) : x /∈ p}

= {p ∈ S(U) : x ∈ p}′

= f(x)′.................................................(3)

In order to prove that f is one-to-one, it suffices to show that its ker(f) = {0}.

If x 6= 0, then there is a principal ultrafilter p generated by x such that x ∈ p;

consequently, the set λ(x) = f(x) is not empty. Thus for each nonzero element x

in U, λ(x) 6= φ so x can not be in the ker(f).

Next, we will show that the the sets {λ(x) : x ∈ U} is the only clopen sets in

S(U). First we will show that λ(x) is closed for any x ∈ U by proving that

S(U) \ λ(x) = λ(x′), so let p ∈ S(U) \ λ(x) then x /∈ p, thus x′ ∈ p ⇒ p ∈ λ(x′),
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conversely let p ∈ λ(x′) so x′ ∈ p then x /∈ p so p ∈ S(U) \ λ(x). Hence λ(x) is

closed.

To show that λ(x) is the only clopen sets, suppose that C is any clopen subset

of S(U). First from (1), λ(x ∨ y) = λ(x) ∪ λ(y).

Let

B = {λ(x) : x ∈ U and λ(x) ⊆ C}.

Since C is open and {λ(x) : x ∈ U} is an open base for τ then for all p ∈ C there

is x0 ∈ U such that p ∈ λ(x0) ⊆ C so, C ⊆ ∪λ(x0). Thus B is an open cover of

C. Since C is closed, it is compact since τ is compact Hausdroff space. So pick a

finite subfamily F of B such that C ⊆ ∪x∈Fλ(x) so, C = λx∈F(∨x) from (1). Set

y = ∨x, x ∈ F , so C = λ(y). Thus if C is clopen subset of S(U) then C = λ(x)

for some x ∈ U. So, f(x) = λ(x), and hence f is onto. So The mapping f is

an isomorphism from U onto the Boolean algebra of open-and-closed subsets of

S(U).

It is well known that a Stone space S(B) is compact Hausdorff and totally

disconnected and that any topological space is homeomorphic to S(B) for some

suitable Boolean algebra B. This result is known as the Stone-Duality

Definition 2.1.18. [18] A complete Boolean algebra is a Boolean algebra in which

every subset has a supremum (least upper bound).

Examples 2.1.19. [18]

(1) The class of all subsets of a set X is a complete Boolean algebra.

(2) The set of all subsets of X that are either finite or cofinite is incomplete

Boolean algebra.

Completion of Boolean algebra [10]

A Boolean subalgebra L contained in a Boolean algebra M is said to be generates

M if every element of M is supremum of elements of L.

A homomorphism f of Boolean algebras from B to A is said to be complete if it

preserves any suprema which exist. That is; if a family {pi} of elements in B has
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a supremum P , then the family {f(pi)} has f(p) as a supremum.

A complemetion of L is a pair (M, e) where M is a complete Boolean algebra

and e is a complete monomorphism of L into M and e(L) generates M .We will

usually think of L as a subalgebra of M .

The stone representation Theorem show that every Boolean algebra has a com-

pletion since L is isomorphic to the algebra of clopen supset of its stone space.

2.2 Stone-Čech compactification

Recall that by an embedding of a topological space X into a topological space

Z, we mean a function φ : X → Z which defines a homeomorphism from X onto

φ[X].

Definition 2.2.1. [15] For any topological space X, a compact Hausdorff space

Y is called a compactification of X, if there is an embedding φ of X into Y such

that φ(X) is dense in Y.

We shall identify X with the subspace φ(X) of Y.

Definition 2.2.2. [15] If Y \ X is a singleton set then Y is called a one-point

compactification of X. If Y \ X is a finite (countable or infinite) set, then Y is

called a finite (countable or infinite respectively) compactification of X.

Example 2.2.3. Suppose the real line R under the Euclidean topology. Define

the homeomorphism ϕ : R → (0, 1) by ϕ(x) = x
1+|x| . Since (0, 1) is dense in the

compact Hausdorff space [0, 1], then [0, 1] is a compactification of R.

Theorem 2.2.4. A space X has a compactification if and only if it is completely

regular.

Definition 2.2.5. [4] let X be a completely regular topological space. A Stone-

Čech compactification of X is a pair (φ, Z) such that:

(a) Z is a compact Hausdroff space .

(b) φ is an embedding of X into Z.
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(c) φ[X] is a dense in Z, and

(d) given any compact space Y and any continuous function f : X → Y there

exists a continuous function g : Z → Y such that g ◦ φ = f.

Proposition 2.2.6. [4] Let X be a completely regular topological space and (φ, Z)

and (τ,W ) be Stone-Čech compactification of X. Then there is a homeomorphism

γ : Z → W such that γ ◦ φ = τ

Proof. Since (τ,W ) is a Stone-Čech compactification ofX then τ, is an embedding

of X into W, hence τ : X → τ(X) is continuous. By Theorem 1.2.12 τ : X → W

is continuous. But W is compact and (φ, Z) is a Stone–Čech compactification of

X then there exists a continuous function γ : Z → W such that γ ◦ φ = τ .

The a bove remark can be viewed as saying:” The Stone-Čech compactification

of X is unique up to homoemorphism”

Throughout this section S will be denote an infinite discrete space. Recall that

the power set P(S) of all subsets of S together with the usual set operations is a

Boolean algebra. As a special case a filter U on a set S is a nonempty collection

of nonempty subsets S with the following properties:

(a) if F1, F2 ∈ U then F1 ∩ F2 ∈ U ,

(b) if F ∈ U and F ⊆ E, then E ∈ U .

A proper filter which is maximal among the class of proper filters is called an

ultrafilter of B.

Remark 2.2.7. Let S be a infinite discrete space. We will denote S(S) (the set

of all ultrafilters of S) by βS and for any A ⊆ S we will denote λ(A) by Â, so

Â = {U ∈ βS|A ∈ U} and {Â | A ⊆ S} forms a base for a topology on βS.

Theorem 2.2.8. [4] Let S be a discrete space, a ∈ S, and e : S → βS defined by

e[a] = {A ⊆ S : a ∈ A, } then (e, βS) is a Stone–Čech compactification of S.

Remark 2.2.9. For each a ∈ S, e(a) is the principal ultrafilter corresponding

to a. For any A ⊆ S, e(A) =
⋃
e[a] for all a ∈ A. The principal ultrafilters are

being identified with the points of S, so S ⊆ βS and we denote S∗ = β(S) \ S.
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Note that from Theorem 2.2.8 we conclude that S is dense in βS and given

any compact space Y and any function f : S → Y there exists a continuous

function g : βS → Y such that g|S = f.

Theorem 2.2.10. [4] Let S be a infinite discrete space and let A, B ⊆ S.

(a) (Â ∪B) = Â ∪ B̂.

(b) (Â ∩B) = Â ∩ B̂.

(c) (Ŝ \ A) = βS \ Â.

Definition 2.2.11. [4] Let D be a discrete space, let Y be a compact space,

and let f : D → Y. Then f̂ is the continuous function from βD to Y such that

f̂|D = f.

In the following theorem we will show that for any discrete semigroup S, there

is a natural extension of the operation (·) of S to βS making βS a compact right

topological semigroup with S contained in its topological center.

Theorem 2.2.12. [4] Let S be a discrete space and let · be a binary operation

defined on S. Then there is a unique extension binary operation ∗ : βS×βS → βS

satisfying the following three conditions:

(a) for every s, t ∈ S, s ∗ t = s · t,

(b) for each q ∈ βS the function ρq : βS → βS is continuous where ρq(p) = p∗q,

(c) for each s ∈ S, the function λs : βS → βS is continuous, where λs(q) = s∗q.

We will denote the operation on βS by the same symbol as that used for the

operation on S.

Definition 2.2.13. [4] Let S be a discrete space, Y a topological space, p ∈ βS,

and y ∈ Y. If A ∈ p and f : A → Y, then we shall write lima→pf(a) = y if and

only if for every neighborhood V of y, there is neighborhood U of p in βS such

that f [A ∩ U ] ⊆ V .
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The statements in the following proposition follow immediately from the fact

that λs is continuous for every s ∈ S and ρq is continuous for every q ∈ βS.

Proposition 2.2.14. [4] Let · be a binary operation on a discrete space S.

(a) If s ∈ S and q ∈ βS, then s · q = limt→qs · t

(b) If p, q ∈ βS , then p · q= lims→p(limt→qs · t)

Where s, t denote elements of S

Theorem 2.2.15. [4] Let (S, .) be a semigroup .Then the extended operation on

βS is associative.

Proof. Let p, q, r ∈ β. From Proposition 2.2.14 we consider lima→p limb→q limc→r(a.b).c,

where a, b and c denote elements of S .We have:

lim
a→p

lim
b→q

lim
c→r

(a.b).c = lim
a→p

lim
b→q

(a.b).r (because λa.b is continuous)

= lim
a→p

(a.q).r (because ρr ◦ λa is continuous)

= (p.q).r (because ρr ◦ ρq is continuous).

Also:

lim
a→p

lim
b→q

lim
c→r

a.(b.c) = lim
a→p

lim
b→q

a.(b.r) (because λa ◦ λb is continuous)

= lim
a→p

a.(q.r) (because λa ◦ ρr is continuous).

= p.(q.r) (because ρq.r is continuous).

Since S is associative then (a.b).c = a.(b.c) so (p.q).r = p.(q.r).

As a consequence of Theorems 2.2.8, 2.2.12 and 2.2.15 we see that βS is a

compact right topological semigroup.

Remark 2.2.16. Let (S, .) be a semigroup .If p, q ∈ S∗ then p.q ∈ S∗

Proof. Since p, q ∈ S∗ then p = limt→pt and q = lims→qs where s, t elements in

S so

lim
t→p

lim
s→q

ts = lim
t→p

(lim
s→q

ts) = lim
t→p

tq (because λt is continuous)

= lim
t→p

ρq(t) = ρq(lim
t→p

t) = ρq(p) = pq (because ρq is continuous)
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Definition 2.2.17. Let (S, .) be a semigroup, let A ⊆ S and let s ∈ S. Then we

define

(a) s−1A = {y ∈ S : s · y ∈ A}.

(a) As−1 = {y ∈ S : y · s ∈ A}.

Theorem 2.2.18. [4] Let (S, .) be a semigroup, let A ⊆ S. Then

(a) For any s ∈ S and q ∈ βS , A ∈ s · q if and only if s−1A ∈ q.

(b) For any p, q ∈ βS, A ∈ p.q if and only if {s ∈ S : s−1A ∈ q} ∈ p.

Definition 2.2.19. [4] Let S be any set and let U be a filter on S .A family A is

a filter base for U if and only if A ⊆ U and for each B ∈ U there is some A ∈ A

such that A ⊆ B .

Remark 2.2.20. [17] Let (S, .) be a semigroup and let p and q ∈ βS then the

ultrafilter pq has a base of subsets
⋃
{xBx : x ∈ A}, where A ∈ p and Bx ∈ q.

Proof. Let A be a family of subsets
⋃
{xBx : x ∈ A}. First we will prove that

A ⊆ pq, so let H ∈ A then H =
⋃
{xBx : x ∈ A} for some A ∈ p and Bx ∈ q.

Since A ∈ p then A 6= φ, so let x0 ∈ A then {x0Bx0 : x0 ∈ A} ⊆ H so,

Bx0 ⊆ x−1
0 H. Since Bx0 ∈ q and q is an ultrafilter, then x−1

0 H ∈ q. which implies

that x0 ∈ {t ∈ S : t−1H ∈ q}. Hence A ⊆ {t ∈ S : t−1H ∈ q} ∈ p since A ∈ p.

From Theorem 2.2.18 H ∈ pq.

Seconed we will prove that for any B ∈ pq there is some H ∈ A such that

H ⊆ B. Let B ∈ pq then from Theorem 2.2.18, {t ∈ S : t−1B ∈ q} ∈ p. Let

A = {t ∈ S : t−1B ∈ q}, then A ∈ p, and for all X ∈ A we have x−1B ∈ q. Put

Bx = x−1B and let H =
⋃
{xBx : x ∈ A}. Clearly H ⊆ B .

2.3 Compactifications of Discrete Spaces

Remark 2.3.1. [15]

Let S be infinite discrete space and let B be a Boolean subalgebra of P(S)

then a proper filter U of B is maximal if and only if B \ U is closed under finite

unions.
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Proof. Let U be an ultrafiter and let {A1, A2, ..., An} be subsets of B \ U then

Aci ∈ U for all i = 1, 2, .., n, so by definition of filter, ∩ni=1A
c
i ∈ U. Since U is

an ultrafilter, (∩ni=1A
c
i)
c /∈ U. Hence (∩ni=1A

c
i)
c = ∪ni=1Ai ∈ B \ U .Conversely ,

suppose that B \ U is closed under finite unions and assume by contrary that U

is not maximal then there exist a ultrafilter D of B such that U ⊂ D then choose

A ∈ D \ U so Ac /∈ D which implies Ac /∈ U. Since B \ U is closed under finite

unions then S = A∪Ac ∈ B \U. Since U is filter then U 6= φ. choose A ∈ U, then

A ⊆ S. From definition of filter S ∈ U contradiction.

Let B0 be the Boolean subalgebra of all subset of S that are either finite or

cofinite.

Theorem 2.3.2. [3] Let S be an infinite discrete space. Then βB0 is the one-

point compactification of S and βP(S) is the Stone-Čech compactification of S.

In the following we shall prove that βB is a compactification of S, for any

Boolean subalgebra B of P(S) containing B0.

Theorem 2.3.3. [15] Let S be an infinite discrete pace and B a Boolean subal-

gebra of P(S) containing B0. Then the Stone space βB is a compactification of

S in which S is open.

Proof. It is well known that βB is a compact Hausdorff space. Now define a map

α : S → βB by α(d) = {A ∈ B|d ∈ A}. Since B containing B0 then {d} ∈ B

for all d ∈ S. First we will show α(d) is an ultrafilter, since {d} ∈ α(d) then

α(d) 6= φ. Moreover if A1, A2 ∈ α(d) then d ∈ A1 ∩ A2, so A1 ∩ A2 ∈ α(d).

Now let A1 ∈ α(d) so for any set A2 such that A1 ⊆ A2 we have d ∈ A1 ⊆ A2

which implies that α(d) is filter. To prove that it is maximal let {A1, ..., An} be

in B \ α(d) so d /∈ Ai for all i = 1, ..., n. Hence d /∈ ∪ni=1Ai. Therefore B \ α(d) is

closed under finite union and so α(d) is maximal.

Also, for any d ∈ S, α(d) = {̂d}, since any ultrafilter of B containing {d} must be

equal α(d), To see this let U be an ultrafilter containing {d} and let A ∈ α(d) then

d ∈ A so {d} ⊆ A which impliese that A ∈ U from the definition of ultrafilter.

Hence α(d) ⊆ U. Since α(d) is ultrafilter, α(d) = U.

34



To prove α is one-one, let d1, d2 ∈ S such that α(d1) = α(d2), since B containing

B0 then {d1} is in B and so {d1} ∈ α(d1) = α(d2) so d2 ∈ {d1} which implies

d1 = d2.

Since S is discrete, we have α : S → βB is a continuous map. Now we shall prove

that α is an embedding of S into βB. For any d ∈ S, since {α(d)} = α(S) ∩ {̂d}

and hence each singleton set is open in α(S). This proves that α(S) is discrete

and hence α is an embedding of S into βB. Next, if Â is a non empty basic open

set in βB, then A 6= φ and if a ∈ A, then α(a) ∈ α(S) ∩ Â and so α(S) ∩ Â 6= φ.

Therefore α(S) is dense in βB. Thus βB is a compactification of S. Also since

{α(d)} = {̂d}, This proves that α(S) is open in βB.

Remark 2.3.4. [15] If A and B are clopen subsets of topological space X and

D is a dense subset of X then:

(a) A ∩D = φ⇔ A = φ

(b) A ∩D ⊆ B ∩D ⇔ A ⊆ B.

(c) A ∩D = B ∩D ⇔ A = B.

Proof. (a) By contrapositive, since A is open and D is a dense subset then

A 6= φ if and only if A ∩D 6= φ.

(b) Suppose that A ∩D ⊆ B ∩D and let x ∈ A .

Case(1): If x ∈ D then

x ∈ A ∩D ⊆ B ∩D ⇒ x ∈ B

Case(2): If x /∈ D. Suppose to contrary that x /∈ B then x ∈ Bc which is

open set. so A ∩ Bc is open set containing x. Since D is a dense subset of

X then (A ∩ Bc) \ {x} ∩D 6= φ. Pick y ∈ A ∩ Bc ∩D ⊆ B ∩D ∩ Bc = φ

contradiction. Hence x ∈ B .

Conversely if A ⊆ B then A ∩D ⊆ B ∩D .

(c) By using part (b) we have

A ∩D = B ∩D ⇔ A ∩D ⊆ B ∩D and B ∩D ⊆ A ∩D
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⇔ A ⊆ B and B ⊆ A⇔ A = B.

Now we have the following, which is a converse of Theorem 2.3.3, in the

sense that any totally disconnected compactification of S must necessarily be

(homeomorphic to) the Spectrum of a Boolean subalgebra of P(S) containing

B0.

Theorem 2.3.5. [15] A compactification of an infinite discrete space S is totally

disconnected if and only if it is homeomorphic to βB for some Boolean subalgebra

B of P(S) containing B0.

Proof. Let Y be a compactification of S. Suppose that Y is totally disconnected.

Consider B = {A∩S | A is a clopen subset of Y }. It is not difficult to show that

B is a Boolean subalgebra of P(S). Since S is discrete then for any d ∈ S, {d}

is open in S. But Y is totally disconnected hence there is a clopen subset A of

Y such that d = A ∩ S. This implies that {d} ∈ B for all d ∈ S and hence all

finite subsets of S must be in B, to prove this let A be finite subset of S then

A = {d1, ..., dn} where di ∈ S for all i = 1, ..., n. Since {d} ∈ B for all d ∈ S then

for each {di} ∈ A there exist clopen subset Ai such that {di} = Ai ∩ S. Hence

A = ∪ni=1{di} = ∪ni=1(Ai ∩ S) = (∪ni=1Ai) ∩ S ∈ B.

Also if U ∈ S, and S \U is finite, then S \U ∈ B so S \U = A∩S for some clopen

subset A of Y. Hence U = (S \U)c ∩ S = (A∩ S)c ∩ S = (Ac ∪ Sc)∩ S = Ac ∩ S.

Since Ac is clopen subset of Y, U ∈ B. So that B contains B0. Now we shall prove

that Y ∼= βB. Define f : Y → βB by

f(y) = {A ∩ S|A is clopen in Y and y ∈ A}.

Firstly, we will show that f(y) is an ultrafilter of B. First f(y) 6= φ since S =

Y ∩ S ∈ f(y). Now let A and B ∈ f(y) then A = A1 ∩ S and B = B1 ∩ S where

A1 and B1 are clopen subsets of Y and y ∈ A1 ∩B1. Hence

A ∩B = (A1 ∩ S) ∩ (B1 ∩ S) = (A1 ∩ B1) ∩ S ∈ f(y).
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If A ∈ f(y), then A = A1∩S where A1 is clopen subset of Y and y ∈ A1. If A ⊆ C

for some C ∈ B, then A1∩S ⊆ C = C1∩S where C1 is clopen subset of Y, so from

Remark 2.3.4 y ∈ A1 ⊆ C1 so C ∈ f(y). Therefore f(y) is a filter. To show that

it is maximal, Let {A1, A2, ..., An} ∈ B \ f(y). Since Ai ∈ B for all i = 1, ..., n.

then Ai = Ci ∩ S where Ci is clopen subset of Y. Moreover since Ai /∈ f(y),

then y /∈ Ci. Thus y /∈ ∪ni=1Ai. Suppose by contrary that ∪ni=1Ai ∈ f(y), then

∪ni=1Ai = C ∩ S for some clopen subset C of Y and y ∈ C. But

∪ni=1Ai = ∪ni=1(Ci ∩ S) = (∪ni=1Ci) ∩ S.

Hence (∪ni=1Ci) ∩ S = C ∩ S. Sinse (∪ni=1Ci) and C are clopen subsets of Y and

S is dense, then from Remark 2.3.4 (∪ni=1Ci) = C which is contradiction sinse

y ∈ C and y /∈ ∪ni=1Ci. Therefore B \ f(y) is closed under finite union so it is

maximal.

Secondly, we will show that f is an injection. Let y1 and y2 ∈ Y such that

f(y1) = f(y2). Since Y is totally disconnected, if y1 6= y2, then there is a clopen

subset A of Y such that A contains one of y1 or y2 and not contains the other,

say y1 ∈ A. Then A ∩D ∈ f(y1) = f(y2) so y2 ∈ A which is contradiction. Thus

y1 = y2.

Thiredly, to prove that f is onto, let U be any ultrafilter of B. Then U satisfies

the finite intersection property and so is {A | A is clopen in Y and A ∩ S ∈ U}.

By the compactness of Y , there exists y ∈ Y such that, for any clopen set A in Y

such that A ∩ S ∈ U we have y ∈ A, otherwise suppose that for all y ∈ Y there

exists clopen set Ay in Y such that Ay∩S ∈ U and y /∈ Ay so Y =
⋃

(Ay)
c . But Y

is compact so Y =
⋃n
i=1(Ayi)

c where {(Ay1)c, (Ay2)c, ..., (Ayn)c} is finite subfamily

from {(Ay)c : y ∈ Y } and Ayi ∩ S ∈ U . Thus φ = ∩ni=1Ayi = ∩ni=1(Ayi ∩ S)

contradiction since U satisfies the finite intersection property .

From this, it follows that U ⊆ f(y) and hence U = f(y) because U is an ultrafilter.

Therefore f is a surjection too.

Finally, for any A ∩ S ∈ B, where A is clopen in Y.

f−1(Â ∩ S) = {y ∈ Y |f(y) ∈ Â ∩ S}

= {y ∈ Y |A ∩ S ∈ f(y)}
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= {y ∈ Y |y ∈ A} = A

This implies that f is continuous and hence f is a homeomorphism (since both

Y and βB are compact Hausdorff spaces).

The converse follows from Theorem 2.3.3

Definition 2.3.6. [13] The (direct) product of two Boolean algebras B and C

is the algebra

A = BC = {(p, q) : p ∈ B and q ∈ C}

with the operations :

(1) (p, q) ∧ (r, s) = (p ∧ r, q ∧ s).

(2) (p, q) ∨ (r, s) = (p ∨ r, q ∨ s).

(3) (p, q)′ = (p′, q′).

where p∧ r and p∨ r are the operation of p and r in B, while q ∧ s and q ∨ s are

the operation of q and s in C. Also, p′ and q′ are the complements of p and q in

B and C respectively.

The product A is a Boolean algebra with zero (0, 0) and unit (1, 1).

In the case when B and C are fields of subsets of disjoint sets Y and Z respectively,

their product A represents itself naturally as a field of subsets of the union X =

Y ∪ Z. Every subset S of X can be written in one and only one way as a union

S = P ∪Q of a subset P of Y and a subset Q of Z. Indeed,

P = S ∩ Y and Q = S ∩ Z.

Furthermore, if S1 and S2 are subsets of X, say

S1 = P1 ∪Q1 and S2 = P2 ∪Q2,

then

(1) S1 ∩ S2 = (P1 ∩ P2) ∪ (Q1 ∩Q).
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(2) S1 ∪ S2 = (P1 ∪ P2) ∩ (Q1 ∪Q).

(3) S ′1 = P ′1 ∪Q′1.

The representation f of the product A as a field of subsets of X maps each pair

(P,Q) in A to the union P ∪ Q. Since every subset of X can be written in only

one way as such a union, the mapping f is one-to-one. Almost everything that

has been said can be generalized.

Definition 2.3.7. [13] The (direct) product of a family {Ai}i∈I of Boolean al-

gebras is the algebra

A =
∏

Ai,

The universe of the product consists of the functions p with domain I such that

p(i) - or pi as we shall usually write is an element of Ai for each index i. The

operation of p and q in A are the functions p ∧ q and p ∨ q on I defined by

(p ∧ q)i = pi ∧ qi and (p ∨ q)i = pi ∨ qi,

while the complement of p is the function p′ on I defined by

(p′)i = p′i.

The right sides of these equations are computed in the Boolean algebra Ai for

each i. Under these operations, the product A is a Boolean algebra with zero and

unit of the product are the functions 0 and 1 on I defined by

0 = 0i and 1 = 1i,

where the elements on the right sides of these equations are the zero and unit of

Ai for each i. The algebras Ai are the factors of the product A.

If each member of a family {Ai} of Boolean algebras is a field of subsets of a

set Xi, and if the sets Xi are mutually disjoint, then the product A =
∏
Ai is

naturally represented as a field of subsets of the union X =
⋃
Xi via the mapping

f that assigns to each element P in A the subset
⋃
Pi of X. (Recall that P is a

function on I, and Pi is a subset of Xi for each i.) Since every subset of X can

be written in only one way as such a union, the mapping f is one-to-one.

39



Theorem 2.3.8. [15] Let Y be a compactification of an infinite discrete space S

and Y \ S finite. Then the following hold.

(1) Y is totally disconnected.

(2) There exist pair-wise disjoint infinite sets S1, S2, ..., Sn of S such that S =

∪ni=1Si and Y is the topological union of the one-point compactifications of

S ′is.

(3) Let Bi = {X ⊆ Si | X or Si \ X is finite}. Then B1 × B2 × ... × Bn is

isomorphic to the Boolean algebra of all clopen subsets of Y and hence Y is

homeomorphic to β(B1 ×B2 × ...×Bn).

Proof. (1) Let Y \ S = {x1, x2, ..., xn}. Since Y is Hausdorff, we can find open

sets A1, A2, ..., An in Y such that xi ∈ Ai and Ai∩Aj = φ for all i 6= j....(1).

Since Y \S is finite and Y is Hausdroff, then Y \S is closed in Y, and hence

S is open in Y. Also, since S is discrete, {d} is open in S and hence in Y ,

for all d ∈ S. The class of all singleton sets {d}, d ∈ S, together with the

Ais forms an open cover for Y . Since Y is compact, there exists a finite

subset E of S such that E ∪ A1 ∪ A2 ∪ ... ∪ An = Y .....(2),

Each Ai\E is open in Y because both of Ai and Ec are open in Y. Then from

(1)and (2) {E,A1 \E,A2 \E, ..., An \E} is a class of open sets in Y which

are pairwise disjoint and cover Y . Therefore, each Ai \E = (∪j 6=iAj \E)c =

∩j 6=i(Aj \ E)c. So it is closed also. Since each {d} is clopen in Y , it follows

that the points of Y are separated by clopen subsets of Y . Thus Y is totally

disconnected.

(2) There exist pairwise disjoint clopen sets Y1, Y2, ..., Yn in Y such that Y =

Y1∪Y2∪, ,∪Yn and xi ∈ Yi for each i. (For example, we can take Y1 = E∪A1

and Yi = Ai \E for i > 1 ). Put Si = Yi∩S .Then Si 6= φ. (since S is dense

and Yi is a nonempty open set in Y ). Also, each Si is infinite; otherwise

Si∪ (Y \Yi) is a closed set containing S and hence Y = Si∪ (Y \Yi) because

S is dense and Y is smallest closed set containing S. Further since Si ⊂ S

for all i, then ∪ni=1Si ⊆ S. Conversely, let x ∈ S then x ∈ Y because S ⊆ Y,

40



so x ∈ Yi for some i. Hence x ∈ Si so, S ⊆ ∪ni=1Si. Therefore S = ∪ni=1Si.

Now we will prove that Yi \ Si = {xi}. Clearly xi ∈ Yi \ Si, suppose that

y ∈ Yi \ Si and y 6= xi, Since y /∈ Si then y /∈ S so y = xj and j 6= i so

y ∈ Yj, but y ∈ Yi so Yi ∩ Yj 6= φ contradiction. Since Yi is closed in Y, Yi

is compact and hence Yi is the one-point compactification of Si. Thus Y is

the topological union of the one-point compactifications of Si’s.

(3) It is well-known from Theorem 2.3.5 that Yi is homeomorphic to the Stone

space βBi, where

Bi = {X ⊆ Si|X or Si \X is finite}.

Further Y = ∪ni=1Yi
∼= ∪ni=1βBi. To see this let x ∈ Y. Then x ∈ Yi for some

unique i. Since Yi is homeomorphic to the Stone space βBi, there exists

a homoeomorphism gi : Yi → βBi. Define F : Y → ∪ni=1β(Bi) given by

F (x) = gi(x). F is homoeomorphism because gi does. Also ∪ni=1β(Bi) ∼=

β(B1 × ...×B2). Hence B1 × ...×Bn is isomorphic to the Boolean algebra

of all clopen subsets of Y (by the Stone duality).

So, we proved that any finite compactification of S is totally disconnected. we

do not know whether finiteness can be dropped in this. However, there are ex-

amples of infinite compactifications, other than the Stone-Čech compactification,

which are totally disconnected. Consider the following example:

Example 2.3.9. [15] Let S = ∪∞n=1Sn, where each Sn is infinite and Sn∩Sm = φ

for all n 6= m. Let

B = {A ⊆ S| for each n, either Sn ∩ A or Sn \ A is finite}.

Then B is a Boolean subalgebra of P(S) containing B0 because for all A ∈ B0

either A is finite or S \ A is finite, but in so ∪∞n=1Sn ∩ A is finite or ∪∞i=1Sn \ A

is finite. Thus for each n Sn ∩ A or Sn \ A is finite so A ∈ B.

By Theorem 2.3.5, βB is a compactification of S which is totally disconnected. It

can be easily seen that B is an incomplete Boolean algebra and hence B can not be
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isomorphic to P(S) so that, by the Stone duality, β(B) can not be homeomorphic

to β(P(S)). This says that β(B) is not the Stone-Čech compactification of S.

Further, for each positive integer n, let

Un = {A ∈ B|Sn ∩ is infinite}.

First we will prove that Un is an ultrafilter of B.

(1) Since Sn ∈ Un so Un 6= φ . Also φ /∈ Un because Sn ∩ φ = φ is finite.

(2) Let A1 and A2 ∈ Un then Sn ∩ A1 and Sn ∩ A2 are infinite. Since A1 ∈ B

and A2 ∈ B then A1 ∩ A2 ∈ B because B is Boolean subalgebra of P(S).

Since Sn ∩A1 and Sn ∩A2 are infinite. Then from definition of B we have

Sn \A1 and Sn \A2 are finite. So, Sn \A1 ∩A2 is finite. But Sn is infinite

so Sn ∩ A1 ∩ A2 is infinite. Hence A1 ∩ A2 ∈ Un.

(3) If A ∈ Un and A ⊆ B then Sn ∩ A ⊆ Sn ∩B is infinite .

(4) To show that Un is maximal, it is enough to show that B \ Un is closed

under finite unions. So let {A1, A2, ..., Am} ∈ B \ Un. Suppose by contrary

that ∪mi=1Ai ∈ Un, then ∪mi=1Ai ∩ Sn is infinite. Since Ai ∈ B for all i, then

either Sn ∩ A or Sn \ A is finite. If for all i = 1, ...,m, Ai ∩ Sn is finite,

then ∪mi=1Ai ∩ Sn is finite contradiction. So, there is j = 1, ...,m such that

Aj ∩ Sn is infinite which implies Aj ∈ Un contradiction, Therefore Un is an

ultrafilter and Un ∈ βB.

Let f : S → βB be the usual embedding defined by

f(d) = {A ∈ B|d ∈ A}.

Then as in the proof of Theorem 2.3.3, f(d) is an ultrafilter. Also, Un 6= f(d) for

all d ∈ S and for all n ∈ N, because S \ {d} ∈ Un but S \ {d} /∈ f(d). Moreover,

for each n we have Sn ∈ Un. Since Sn ∩ Sm = φ for all n 6= m, Un 6= Um. Thus

βB \ f(S) contains infinitely many points. So βB is an infinite compactification

of S.

Finally we will show that each, A ∈ B can be uniquely expressed as A = ∪∞n=1An

42



where An is in the Boolean algebra Bn = {E ⊆ Sn| either E or Sn \ E is finite

} and that B is isomorphic to the product algebra
∏∞

n=1Bn, we will prove this in

three steps:

(1) Step (1): Suppose that A ∈ B and let An = Sn ∩ A. Clearly ∪∞n=1An ⊆ A.

Conversely; let x ∈ A. Since A ⊆ S, then x ∈ S ⇒ x ∈ Sn for some n.

Thus x ∈ An and hence x ∈ ∪∞n=1An. To show the uniqueness suppose that

A = ∪∞n=1Hn where Hn is in the Boolean algebra Bn. Since An = Sn∩A then

An = Sn ∩ (∪∞n=1Hn). = ∪∞n=1(Sn ∩Hn). So, Sn ∩Hn ⊆ An. But Hn ∈ Bn.

So, Hn ⊆ Sn which implies Sn ∩ Hn = Hn. Hence Hn ⊆ An. Suppose that

Hn ⊂ An. Then there is x ∈ An and x /∈ Hn. So, x ∈ Hm for some m.

But Hm ⊆ Am. Then x ∈ Am which implies that An ∩ Am 6= φ. Hence

Sn ∩ Sm 6= φ, which is a contradiction.

(2) Step (2): Since A ∈ B then Sn ∩ A or Sn \ A is finite. So An or Sn \ An
is finite. Since An ⊆ Sn, we have that An ⊆ Bn.

(3) Step (3): Since Sn ∩ Sm 6= φ then An ∩ Am 6= φ. Define f :
∏∞

n=1Bn → B

by f(p) =
⋃∞
n=1An where pn = An for all n. Now we will show that f is an

isomorphism.

(1) Since every subset of B can be written in only one way as such a union,

then the mapping f is one-to-one.

(2) For all A ∈ B, A = ∪∞n=1An, where An ⊆ Bn for each n. Take P ∈∏∞
n=1Bn such that pn = An for all n, then f(P ) = A Hence f is onto.

(3) Let P and Q ∈
∏∞

n=1Bn then (P ∧Q)n = Pn ∩Qn). Thus f(P ∧Q) =⋃∞
n=1(P ∧Q)n =

⋃∞
n=1 Pn∩Qn =

⋃∞
n=1 Pn ∩

⋃∞
n=1Qn = f(P )∩f(Q).

Similarly,f(P ∨ Q) =
⋃∞
n=1(P ∨ Q)n =

⋃∞
n=1 Pn ∪ Qn =

⋃∞
n=1 Pn ∪⋃∞

n=1Qn = f(P ) ∪ f(Q). Also,

Since (P ′)i = P ′i then f(P ′) =
⋃∞
n=1(P

′)n =
⋃∞
n=1 P

′
n = (

⋃∞
n=1 Pn)c =

f(p)c.

By the Stone duality, βB is homeomorphic to the direct sum of the

spaces βBn, n ∈ N.
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Chapter 3

Finite groups in Stone-Čech

compactification

3.1 Ultrafilter semigroups and topologies

In this section all topologies are assumed to satisfy the T1 separation axiom.

Definition 3.1.1. [14] A filter p on a topological space X is said to be convergent

to x if and only if for each neighborhood U of x, U ∈ p.

Definition 3.1.2. [4] Let G be a group. A topology τ on G is left invariant if

for every U ∈ τ and a ∈ G, aU ∈ τ. Equivalently, τ is left invariant if for every

a ∈ G, the left shift λa : G→ G is continuous in τ.

Thus, left invariant topologies on G are those that make G into a left topo-

logical group.

Note that a left invariant topology is completely determined by the neighborhood

filter at the identity.

Definition 3.1.3. [17] Let G be a group and let τ be a left invariant topology

on G. The ultrafilter semigroup of τ is defined as a closed subsemigroup of G, by

Ult(τ) = {p ∈ G∗ : p converges to the identity e ∈ G in T}.
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Definition 3.1.4. [18] For an infinite family of groups Gα for α ∈ I, the direct

sum
⊕

Gα consists of the elements (aα) such that aα is the identity element of

Gα for all but finitely many α.

For illustrated example let X =
⊕∞

i=1 R then the element (1, 0, 0, 0, ...) ∈ X

but the element (1, 1, 1, 1, ....) /∈ X

Definition 3.1.5. Let κ be an infinite cardinal. Suppose for every ordinal α < κ,

we have non-trivial group Gα. Set G =
⊕

α<κGα, then

(a) [7] if e is the identity of G, then for each x ∈ G, we define supp(x) = {α <

κ : xα 6= e}.

(b) [17] we define a set

H =
⋂
α<κ

{c`βG{x ∈ G \ {e} : min supp(x) ≥ α}}.

(c) [17] let τ0 denote the group topology on G with a neighborhood base of

e ∈ G consisting of subgroups

Hα = {x ∈ G : supp(x) ∩ α = φ}

Where α < κ.

Remark 3.1.6. For every x ∈ G =
⊕

α<κGα, supp(x) is finite.

Note that the setsHα contains the identity and all elements such thatminsupp(x) ≥

α.

Lemma 3.1.7. [17] Let κ be an infinite cardinal. For every ordinal α < κ, let

Gα be a nontrivial group, let G =
⊕

α<κGα, and let

H =
⋂
α<κ

{c`βG{x ∈ G \ {e} : min supp(x) ≥ α}}.

then H = Ult(T0)
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Proof. Let Sα = {x ∈ G \ {e} : min supp(x) ≥ α} then H =
⋂
α<κ c`βGSα. Note

that Hα = Sα∪{e}. Let p ∈ Ult(T0) then p converge to e. Pick α < κ, so Hα ∈ p.

Suppose by contrary that p /∈ c`βGSα, then there is A ∈ p such that Â ∩ Sα = φ.

Since A∩Hα 6= φ then the only element in this intersection is {e}. Thus {e} ∈ p

which implies that p is principal ultrafilter generated by e contradiction since

p ∈ G∗.

Conversely let p ∈ H and pick Hα neighborhood of e. Suppose by contrary that

Hα /∈ p then Hc
α ∈ p. Since p ∈ c`βGSα then Ĥc

α∩Sα 6= φ which is a contradiction.

Lemma 3.1.8. [17] Let G be a group, then the ultrafilter semigroup Ult(τ) is a

closed subsemigroup of G∗.

Proof. Let S = Ult(τ). To see that S is closed, let p ∈ G∗ \ S. Then p does not

converge to the identity, so there is a neighborhood U of e such that U /∈ p. Put

C = G \ U , then C ∈ p so, p ∈ Ĉ. Moreover, Ĉ ∩ S = φ, otherwise if there exist

q ∈ Ĉ ∩ S then C ∈ q and q converges to e. Thus U ∈ q and C ∈ q which implies

C ∩ U 6= φ which is a contradiction.

To see that S is a semigroup, let p, q ∈ S. From Remark 2.2.16, pq ∈ G∗, and so

it suffices to prove that pq converges to e. Let U be an open neighborhood of e.

For every x ∈ U , put Vx = x−1U . Then U =
⋃
x∈U xVx. To prove this, let x ∈ U

then x = ex ∈ eVe so U ⊆
⋃
x∈U xVx. On the other hand, for each x ∈ U we

have Vx = x−1U = {t ∈ G : xt ∈ U} then xVx = {xt ∈ G : xt ∈ U} ⊆ U, so⋃
x∈U xVx ⊆ U. Since U ∈ p and Vx ∈ q, U =

⋃
x∈U xVx ∈ pq. Hence, U ∈ pq.

Lemma 3.1.9. [17] Let G be a group, then for every nonempty open subset U in

(G, τ), we have Û .Ult(τ) ⊆ Û

Proof. Let p ∈ Û and q ∈ Ult(τ), so U ∈ p and q converge to e. As in the proof

of Lemma 3.1.8, for every x ∈ U, U =
⋃
x∈U xVx. Hence, U ∈ pq and pq ∈ Û

Lemma 3.1.10. [17] If Ult(τ) has only one minimal right ideal, then τ is ex-

tremally disconnected.
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Proof. Let S = Ult(τ). Suppose to the contrary that τ is not extremally discon-

nected. Then there are two disjoint open subsets U and V such that

c`(U) ∩ c`(V ) 6= φ.

Also Û ∩ S and V̂ ∩ S are disjoint, since if p ∈ (Û ∩ S) ∩ (V̂ ∩ S) then U ∈ p

and V ∈ p, so U ∩ V 6= φ. Now from Lemma 3.1.9, (Û ∩ S)S ⊆ Û ∩ S and

(V̂ ∩ S)S ⊆ V̂ ∩ S. Thus Û ∩ S and V̂ ∩ S are two disjoint right ideals of S. By

duality of Theorem 1.1.26 we have K(S) = R where R is the minimal right ideal.

so K(S) ⊆ Û ∩S and K(S) ⊆ V̂ ∩S which contradicts that Û ∩S and V̂ ∩S are

two disjoint right ideals.

Definition 3.1.11. [17] A subsemigroup S of a semigroup T is left saturated in

τ if for every x ∈ T \ S, xS ∩ S = φ

Lemma 3.1.12. [17] Let τ be a regular left invariant topology on a group G, and

S = Ult(τ). Then S1 = S ∪ {e} is left saturated in βG.

Proof. Let p ∈ βG\S1. Since S1 is closed and p /∈ S, then there is a neighborhood

U of e in τ with U /∈ p. Since τ is regular then from Theorem 1.2.30 one may

suppose that U is closed. Let C = G\U , then p ∈ Ĉ, C is open, and Ĉ ∩S1 = φ,

otherwise if q ∈ Ĉ ∩ S1 then q converge to e so U ∈ q which contradicts that

q ∈ Ĉ. By Lemma 3.1.9, pS1 ⊆ Ĉ, and so pS1 ∩ S1 = φ

Definition 3.1.13. [17] Given a filter F on G. Then we define

F̂ = {p ∈ βG : F ⊆ p}.

Since each filter is contained in ultrafilter then there ultrafilter p such that

F ⊆ p ∈ F̂ then F̂ 6= φ.

Theorem 3.1.14. [4] Let X be a discrete space :

(a) If F is filter on X, then F̂ is a closed subset of βX.

(b) If S ⊆ βX and F = ∩S, then F is a filter on X and F̂ = c`S.
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Proof. (a) Let p ∈ βX \ F̂ , then p 6= F . Pick B ∈ F\ p. Then X \ B ∈ p

and so, p ∈ X̂ \B. Thus X̂ \B is a neighborhood of p. Now if there is

q ∈ F̂ ∩ X̂ \B, then B ∈ F ⊆ q. Hence B and X \ B will be in q which is

a contradiction.

(b) F is anintersection of filters, so F is a filter. Furthermore, for each p ∈ S

we have F = ∩S ⊆ p. So, we have that S ⊆ F̂ , and by (a) c`S ⊆ F̂ . To see

that F̂ ⊆ c`S, let p ∈ F̂ and let B ∈ p. Suppose to contrary B̂ ∩ S = φ.

Then for each q ∈ S, q ∈ X̂ \B so X \ B ∈ q and then X \ B ∈ F ⊆ p

which is a contradiction.

From Theorem 3.1.14 we conclude that every nonempty closed subset of βG

can be represented in such a form.

Remark 3.1.15. [17]Given a filter F on G, then F̂ =
⋂
{Â : A ∈ F}.

Proof. Let p ∈
⋂
{Â : A ∈ F}. Then p ∈ Â for all A ∈ F which implies that

A ∈ p for all A ∈ F . Hence F ⊆ p, and p ∈ F . Now let p ∈ β(G) such that

F ⊆ p, then for all A ∈ F we have A ∈ p. So p ∈ Â for all A ∈ F which implies

that p ∈
⋂
{Â : A ∈ F}.

Proposition 3.1.16. [17] Let S be a closed subsemigroup of a group G. Suppose

that S1 = S ∪ {e} is left saturated in βG and that S has a finite left ideal. Then

there is a regular left invariant topology τ on G with Ult(τ) = S.

Proof. Since S1 is a closed subsemigroup of G, then from Theorem 3.1.14 we can

find a filter F on G such that F̂ = S1 .We first show that :

(a)
⋂
F = {e}, and

(b) For every U ∈ F , there is a V ∈ F such that for all x ∈ V, x−1U ∈ F .

To prove (a), since {e} ⊆ S1 = F̂ , then {e} ⊆
⋂
Â for all A ∈ F , so

{e} ⊆ Â for all A ∈ F , which implies A ∈ e for all A ∈ F . So,
⋂
A = {e}

for all A ∈ F and then
⋂
F = {e}.
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To prove (b), let U ∈ F , L a finite left ideal of S and let C = G \ U. Since

C ∩U = φ, then Ĉ ∩ Û = φ, otherwise if there is p ∈ Ĉ ∩ Û then C ∈ p and

U ∈ p so, C ∩U 6= φ. Also, since F̂ ⊆ Û then Ĉ ∩ F̂ = φ. Thus Ĉ ∩S1 = φ.

Since S1 is left saturated in βG, Ĉ · S1 ∩ S1 = φ ..............................(1)

Since L is an ideal of S, then L ⊆ S ⊆ S1 so, for every q ∈ L we have

Ĉ · q ⊆ Ĉ · S1......................................................(2)

So, from (1) and (2) we conclude that Ĉq∩S1 = φ. For every q ∈ L we can

choose Wq ∈ F such that Ĉ ·q
⋂
Ŵq = φ. To show this suppose by contrary

that Ĉq∩Ŵ 6= φ for all W ∈ F then Ĉq∩F 6= φ hence, Ĉq∩S1 6= φ which is

a contradiction. Since Wq ∈ F , F ∈ Ŵq, and F̂ ⊆ Ŵq. Put W =
⋂
q∈LWq.

Then W ∈ F , as L is finite, and F is filter. Moreover,

(Ĉ · L) ∩ Ŵ = φ...........................................(3)

Next, since L is a left ideal of S, it follows that S1.L ⊆ L. Since F is

filter and Wq, U ∈ F then U ∩ Wq 6= φ. Now for every q ∈ L, choose

Vq = U ∩Wq ∈ F . Since Vq ⊆ U then Vq ∩C = φ ,thus V̂q ∩ Ĉ = φ so from

(3) V̂q.q ⊆ Ŵ . Put V =
⋂
q∈L Vq. Then V ∈ F and

V̂ · L ⊆ Ŵ ................................(4)

We claim that for all x ∈ V, x−1U ∈ F . Suppose to contrary that for some

x ∈ V , x−1U /∈ F that is (x−1U)c ∈ F thus F ∈ ̂(x−1U)c. But F ∈ Û so

̂(x−1U)c ∩ Û 6= φ so, there is p = F ∈ Û and xp /∈ Û that is xp ∈ Ĉ and

p ∈ S. Take any q ∈ L. Then, from (3),

xpq = xp · q ∈ Ĉ · L ⊆ βG \ Ŵ ,

and form (4),

xpq = x · pq =∈ V̂ .L ⊆ Ŵ ,

which is a contradiction.

Condition (b) can be restated in the following stronger form:

(c) for every U ∈ F , there is a V ∈ F such that V ⊆ U and for all x ∈ V,

x−1V ∈ F .
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To see this, for every U ∈ F , let

U◦ = {x ∈ U : x−1U ∈ F}.

By (b) there is a V ∈ F such that for all x ∈ V, x−1U ∈ F. Since F is filter then

V ∩ U 6= φ so V ⊆ U◦ ∈ F . We claim that (U◦)0 = U◦

Clearly from definition of (U◦)0 that (U◦)0 ⊆ U◦. Let x ∈ U◦ and let V = x−1U.

Then from definition of U◦, V ∈ F. Also xV ⊆ U because for all t ∈ V we have

t ∈ x−1U and then xt ∈ U. Now we will show that xV ◦ ⊆ U0. Let y ∈ V ◦ and

let W = y−1V. Then from definition of V ◦, W ∈ F. Also yW ⊆ V because for all

t ∈ W we have t ∈ y−1V and then yt ∈ V. Consequently,

xyW ⊆ xV ⊆ U.

Hence W ⊆ (xy)−1U ∈ F . Since y ∈ V = x−1U then xy ∈ U. Therefore xy ∈ U◦

Since xV ◦ ⊆ U0. then V ◦ ⊆ x−1U◦ ∈ F so, x ∈ (U◦)0. Now let V = U◦ to get

the result.

It follows from (a) - (c) that there is a left invariant topology τ on G in which F

is the neighborhood filter of e, and so Ult(τ) = S. We now show that τ is regular.

Assume by contrary that τ is not regular. Then there is a neighborhood U, of e

such that for every neighborhood V of e,

c`(V ) \ U 6= φ

For every open neighborhood V of e, choose xv ∈ c`(V ) \ U. Since xv ∈ c`(V ),

there is an ultrafilter on G containing V and converging to xv. Consequently,

there is a filter p→ xv. Since xv /∈ U then xv 6= e. But p→ xv so p not in S.

Since p → xv so, x−1
v p → x−1

v xv = e. Let pv = x−1
v p then pv ∈ S. Since V ∈ p

then x−1
v V ∈ x−1

v p = pv so, V ∈ xvpv.

Take any q ∈ L, since q ∈ L then q ∈ S = Ult(τ). Also since V ∈ xvpv then

xvpv ∈ V̂ . By Lemma 3.1.9, V̂ Ult(τ) ⊆ V̂ which impliese xvpvq ∈ V̂ and,

V ∈ xvpvq,
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Since L is a left ideal of S then pvq ∈ L. But L is finite, then pvq = qi for some

qi ∈ L. Thus V ∈ xvqi,

Therefore, we obtained that there is an ultrafilter p not in S and ultrafilter

qi in S such that pqi ∈ S which impliese that S1 is not left saturated in βG,

contradiction.

3.2 Local homomorphisms and projectivity

Definition 3.2.1. [17] Let G be a group, τ a left invariant topology on G, and X

be open neighborhood of e in τ. A mapping f : X → S, where S is a semigroup,

is called a local homomorphism if for every x ∈ X \ {e}, there is a neighborhood

Ux of e such that f(xy) = f(x)f(y) for all y ∈ Ux \ {e}.

Lemma 3.2.2. [17] Let G be a group, τ a left invariant topology on G, and X

an open neighborhood of e in τ. Let f : X → T be a local homomorphism into

a compact right topological semigroup T such that f(X) ⊆ Λ(T ), f̂ : X̂ → T be

the continuous extension of f, and let f ∗ = f̂ |Ult(τ). Then f ∗ : Ult(τ) → T is

a homomorphism. Furthermore, if for every neighborhood U of e, f(U \ {e}) is

dense in T, then f ∗ is onto.

Proof. [17] Since for any neighborhood U of e, U ∈ q, then from a bove definition

we have if q ∈ Ult(τ), then f(xy) = f(x)f(y) for all x ∈ X and y ∈ U for

all U ∈ q. Also if f(x) ∈ Λ(T ) then λf(x) is continuous so limy→q λf(x)(f(y)) =

λf(x) limy→q f(y) = λf(x)f̂(q)

To show that f ∗ : Ult(τ)→ T is a homomorphism, let p, q ∈ Ult(τ), Then

f̂(pq) = f̂(lim
x→p

lim
y→q

(xy)) and x, y ∈ X

= lim
x→p

lim
y→q

f(xy) (because f̂ is continuous extension of f)

= lim
x→p

lim
y→q

f(x)f(y) (because f is local homomorphism)

= = lim
x→p

f(x)f̂(q) (because f(x) ∈ Λ(T ))

= f̂(p)f̂(q)

To check that f ∗ is onto, let t ∈ T . Since for every neighborhood U of
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e ∈ X, f(U \ {e}) is dense in T, then for every neighborhood V of t in T,

V ∩ f(U \ {e}) 6= φ, thus there exists an x ∈ U \ {e} such that f(x) ∈ V. Let

Au ⊆ U \ {e} such that f(Au) ⊆ V, then Au 6= φ. Let p be the ultrafilter contain-

ing Au, then from definition of Au, p contains any neighborhood U of e. So, p→ e

that is p ∈ Ult(τ). Also we can see limx→p f(x) = t since for every neighborhood

V of t in T, there is a neighborhood f(Au) of p such that f(Au∩X) = f(Au) ⊆ V.

Thus from Definition 2.2.13, we get the result.

It follows that there exists p ∈ Ult(T ) such that f̂(p) = f̂(limx→px) = limx→p f(x) =

t.

Example 3.2.3. [17]Let κ be an infinite cardinal. For every ordinal α < κ, let

Gα be a nontrivial group. Let G =
⊕

Gα and

D = {x ∈ G : |supp(x)| = 1}.

Suppose f0 : D → S is a mapping from D into a semigroup S. Then for all x ∈ G

there exist n ∈ N such that x = x1 · x2... · xn and xi ∈ D, for all i = 1, ..., n.

Extend f0 to the mapping f : G→ S by

f(x1 · ... · xn) = f0(x1) · ... · f0(xn),

where x1, ..., xn ∈ D are such that if supp(x1) = {α1}, ..., supp(xn) = {αn}, then

α1 < ... < αn The value f(e) does not matter, and we can consider f(e) = f0(e).

Let x, y ∈ G\{e} such that max supp(x) < min supp(y). If x = x1 ·x2... ·xn, y =

y1 · y2... · ym, xi, yj ∈ D and if supp(x) = {αi, i = 1, ..n} and supp(y) = {βj, j =

1, ..n}, then αn < β1. Hence f(xy) = f0(x1)·...·f0(xn)f0(y1)·...·f0(yn) = f(x)f(y).

Let τ0 be the topology on G and for any x ∈ G \ {e}, take n = max supp(x), and

let Ux = Hn+1 = {x ∈ G : supp(x) ∩ n + 1 = φ}). Thus form definition of τ0,

Ux is a neighborhood of e. Also for all y ∈ Ux \ {e} we have max supp(x) < min

supp(y). Hence, f : (G, τ0)→ S is a local homomorphism ...........(1)

Now let λ be a cardinal such that |Gα| ≥ λ for all α < κ and let µ = max{κ, λ}.

Let T be any compact right topological semigroup containing a dense subset A such

that |A| ≤ µ and A ⊆ Λ(T ). For any α < µ define ϕα : Gα → D by ϕα(x) = y

where yα = x and yβ = e for all β 6= α. Since |Gα| ≥ λ then for γ < µ and
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xγ ∈ Gα, define Dγ = {ϕα(xγ) for all α < µ}. From definition of Dγ we conclude

that Dγ ⊆ D and then
⋃
Dγ ⊆ D. Now let x ∈ D then so, supp(x) = {α}. Thus

xα 6= eα. Suppose that xα = yβ for some yβ ∈ Gα, then ϕα(yβ) = x. Hence x ∈ Dβ.

Therefore D =
⋃
Dγ for all γ < µ. Let β < γ ≤ µ, and suppose by contrary that

Dγ ∩ Dβ 6= φ for γ 6= β. Pick w in this intersection, then w = ϕα1(xγ) and

w = ϕα2(xβ) where xγ and xβ lie in Gα1 and Gα2 repectivaly. Thus wα1 = xγ and

wα2 = xβ. Since w ∈ D then α1 = α2 and consequently xγ = xβ; that is, β = γ

which is a contradiction. Thereore {Dγ : γ < µ} make a partition of D. Now for

every γ < µ define Uγ such that :

(a) φ /∈ Uγ and Dγ ∈ Uγ,

(b) for any α < κ, Hα ∈ Uγ,

(c) if A ⊆ G such that Hα ⊆ A then A ∈ Uγ,

(d) if A ⊆ G such that Dγ ⊆ A then A ∈ Uγ,

Notic that Uγ is an ultrafilter, to see this it is suffices to prove that Hα ∩Dγ 6= φ

for any α < κ. So, ϕα(xγ) = y where yα = xγ 6= eγ. So, ϕα(xγ) ∈ Hα. Since

Hα ∈ Uγ. for all α < κ then Uγ converge to the identity in τ0. Hence D̂γ ∩H 6= φ.

Now, choose any surjection g : µ → A. For any x ∈ D, x ∈ Dγ for some γ < µ

so define f0 : D → A by

f0(x) = g(γ) if x ∈ Dγ

Let f : G→ T be defined by f(x1 · ... · xn) = f0(x1) · ... · f0(xn) = g(γ1) · ... · g(γn)

where x1, ..., xn ∈ D and xi ∈ Dγi . So from (1), f is local homomorphism. Then

f ∗ : Ult(τ0)→ T is a surjective homomorphism.

Definition 3.2.4. [17]Let κ be an infinite cardinal. For every ordinal α < κ, let

Gα be a nontrivial group. Let G =
⊕

Gα, τ any nondiscrete zero-dimensional

left invariant topology on G such that τ0 ⊆ τ , and X an open neighborhood of

e ∈ G in τ. An independent system in X is a mapping M such that:

(a) D = dom(M) is a subset of X \ {e};
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(b) for every x ∈ D, M(x) is a clopen subset of X \ {e} with x ∈M(x);

(c) M(x) ∩M(y) = φ for all distinct x, y ∈ D.

If M is an independent system, then an M−product is a product of the form

x0x1...xn,such that for each i ≤ n, xi ∈ D and xi · ... · xn ∈M(xi).

Lemma 3.2.5. [17]A decomposition into an M-product is unique.

Proof. Let x0 · ... ·xn and y0 · ... · ym be M-products, and let x0 · ... ·xn= y0 · ... · ym
We prove that n = m and xi = yi for all i ≤ n. We proceed by induction on

min{n,m}.

Suppose that min{n,m} = 0. Now from definition of independent system x0 ∈

M(x0), with out loss of generality, let n = 0 then

x0 = y0 · ... · ym ∈M(y0)

Since {M(x) : x ∈ D} is pairwise disjoint, it follows that x0 = y0,

Moreover, m = 0 Indeed,otherwise y1 · ... · ym = e, but y1 · ... · ym ∈ M(y1), so

e ∈M(y1) which contradict that M(y1) is a clopen subset of X \ {e}.

Let min{n,m} = K > 0 and suppose that the statment is true for all m < K.

Again from definition of M-products we find that

x0 · ... · xn ∈M(x0) and x0 · ... · xn = y0 · ... · ym ∈M(y0)

,so x0 = y0 But then x1 · ... · xn = y1 · ... · ym. So if we apply the inductive

assumption we get the result.

Proposition 3.2.6. [17] Let κ be an infinite cardinal. For every ordinal α < κ,

let Gα be a nontrivial group. Let G =
⊕

Gα, τ any nondiscrete zero-dimensional

left invariant topology on G such that τ0 ⊆ τ , and X an open neighborhood of

e ∈ G in τ. Then for every homomorphism g : R → Qof a semigroup R onto

a semigroup Q and for every local homomorphism f : X → Q, there is a local

homomorphism h : X → R such that f = g ◦ h.
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Proof. [17] For every x ∈ X \ {e}, since f is local homomorphism, then we

can choose a neighborhood Ux of e ∈ X such that f(xy) = f(x)f(y) for all

y ∈ Ux \ {e}...................(∗),

Let ν(x) = max supp(x), and let

Fx = {y ∈ X \ {e} : ν(y) < ν(x) and y(β) = x(β) for all β ∈ supp(y)}.

Note that Fx is finite. To show this, suppose by contrary that Fx is infinite. Then

for all y ∈ Fx, y(β) = x(β) for all β ∈ supp(y), so there is infinite many terms Xβ

such that Xβ 6= eβ (i.e supp(x) is infinite ) contradiction. Also for every α < κ,

let

Xα = {x ∈ X : max supp(x) = α}.

Define inductively an increasing sequence (Mα)α<κ of independent systems in X

by the following conditions:

(a) M0 = φ;

(b) Mα =
⋃
β<αMβ if α is a limit ordinal;

(c) Dα+1 = Dα ∪ (Xα \
⋃
x∈DαMα(x)), and

(d) for every x ∈ Dα+1 \Dα,

Mα+1(x) = (x(Ux ∩Hν(x)+1)) \
⋃

y∈Fx∩Dα

Mα(y).

Recall that for every α < κ, Hα = {x ∈ G : supp(x) ∩ α = φ}.

For n = 0 , M0 = φ is an independent system. Suppose For all α < κ, Mα is

an independent system. Now, for n = α + 1 It follows from (c) that for every

x ∈ Dα+1 \ Dα, x ∈ (Xα \
⋃
y∈DαMα(y)) so, x /∈

⋃
y∈DαMα(y). Since Mα is an

independent systems, then for every x ∈ Dα, Mα(x) is a clopen subset of X \ {e}

with x ∈M(x). Then Mα(y) is a clopen subset of X\{e} for all y ∈ Fx∩Dα. Since

Fx ∩Dα is finite, so
⋃
y∈Fx∩DαMα(y) is closed which implies

⋂
y∈Fx∩DαM

c
α(y) is

open ...........(1) .

Since Hν(x)+1 ∈ τ0 ⊆ τ, Ux ∩Hν(x)+1 ∈ τ. But τ is a left invariant topology on G
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so x(Ux ∩Hν(x)+1) is open in τ ........(2).

From (1) and (2), Mα+1(x) is open. Also from part (d)M c
α+1(x) =

⋃
y∈Fx∩DαMα(y)

which is open so Mα+1(x) is closed. Therefore Mα+1(x) is a clopen neighborhood

of x ∈ X \ {e}. To see that

Mα+1(x) ∩Mα+1(y) = φ.

whenever x, y ∈ Dα+1 and x 6= y, suppose that x ∈ Dα+1 \Dα then from part (c)

x ∈ Xα \
⋃
x∈DαMα(x). So, υ(x) = max supp(x) = α. If y ∈ Fx, then υ(y) < υ(x)

i.e max supp(y) < α. Thus y /∈ Xα which implies from part (c) that y ∈ Dα, and

so from part (d) Mα+1(x)
⋂
Mα+1(y) = φ. If y /∈ Fx, then υ(y) ≥ υ(y) or there is

a β ∈ supp(y) with y(β) 6= x(β), so we have two cases:

Case (1): If ν(y) ≥ ν(x), suppose that y(β) = x(β) for all β ∈ supp(y), then

ν(y) ≤ ν(x). Hence ν(y) = ν(x). Since x 6= y, there is γ ∈ supp(x) such that

yγ = eγ. Suppose to contrary xHν(x)+1 ∩ yHν(y)+1 6= φ. Then there is r ∈ Hν(x)+1,

and m ∈ Hν(y)+1 such that xr = ym. Since γ < ν(y) = ν(x), then rγ = mγ = eγ.

Thus xγ = xγrγ = (xr)γ = (ym)γ = yγmγ = yγ = eγ, which is a contradiction.

Case (2): If there is a β ∈ supp(y) with y(β) 6= x(β). Suppose to contrary that

xHν(x)+1 ∩ yHν(y)+1 6= φ, then there is r ∈ Hν(x)+1, and m ∈ Hν(y)+1 such that

xr = ym. Since y ∈ Dα+1, then from part (c), ν(y) ≤ ν(x), so rβ = mβ = eβ,

where β < ν(y) ≤ ν(x). Thus xβ = xβrβ = (xr)β = (ym)β = yβmβ = yβ = eβ,

which is a contradiction. Therefore in two cases, xHν(x)+1 ∩ yHν(y)+1 = φ, and

again by part (d), Mα+1(x) ∩Mα+1(y) = φ.

Thus, (Mα)α<κ is indeed an increasing sequence of independent systems in X.

Put M =
⋃
α<κMα. then M is an independent system in X. To show this, let

D = Dom(M) =
⋃∞
i=1D(Mα)

(1) Since each D(Mα) is subset of X \ {e} so Dom (M) is subset of X \ {e}

(2) Let x ∈ D then x ∈ D(Mα) for some α < κ. Since (Mα)α<κ is an increasing

sequance then M(x) = Mα(x) so M(x) is a clopen subset of X \ {e} with

x ∈M(x).

(3) Let x, y in D then there is α,β such that x ∈ D(Mα) and y ∈ D(Mβ). Since
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(Mα)α<κ is an increasing sequance then there exist γ = max{α, β} such

that x, y ∈ Mγ .But Mγ is an independent system then M(x)
⋂
M(y)=

Mγ(x)
⋂
Mγ(y) = φ

Now, We claim that:

(1) every X \ {e} can be decomposed into an M-product, and

(2) f(x0 · ... · xn) = f(x0) · ... · f(xn) whenever x0...xn is an M-product.

To see (a), let x ∈ X \ {e}, then x ∈ Xα for some α, so fix α < κ. We show

that every x ∈ Xα can be decomposed into an Mα+1−product. We proceed by

induction on |supp(x)|.

Let |supp(x)| = 1. Then x ∈ Dα+1. Indeed, otherwise from (c) x ∈ Mα(y) for

some y ∈ Dα, then from part (d) x = yz for some z ∈ Hυ(y)+1 and υ(y) < β

where β = min supp(z), and so |supp(x)| > 1 because at least xβ and xυ(y) in

supp(x) which is a contradiction. Since x ∈ Dα+1, x = x is an Mα+1−product.

Now suppose that |supp(x)| > 1 and the statement holds for all z ∈ Xα with

|supp(z)| < |supp(x)|.

If x ∈ Dα+1, then x = x is an Mα+1−product. Otherwise from (c) x ∈Mα(y) for

some y ∈ Dα. Then from part (d) x = yz for some z ∈ Hυ(y)+1, and υ(y) < β

where β = min supp(z). Since x ∈ Xα, then max supp(x) = α. Since υ(y) < β,

then supp(y)
⋂
supp(z) = ∅, so xα = (zy)α = zα then zα 6= e. Moreover, if there

exists γ > α such that zγ 6= e, then max supp(x) 6= α which ic contradiction.

Therefore max supp(z) = α which implies z ∈ Xα.

Since υ(y) < β, then supp(y)
⋂
supp(z) = ∅. Since x = yz then |supp(x)| =

|supp(y)|+ |supp(z)|. Thus |supp(z)| < |supp(x)| .

By the inductive hypothesis, z can be decomposed into an Mα+1−product z =

z1 · ... ·zn. Then x = yz1 · ... ·zn. Since Mα is an increasing sequance and x ∈Mα(y)

then x ∈ Mα+1(y). Hence x is an Mα+1−product. Now for all x ∈ M , x ∈ Mα

for some α < κ so x is Mα+1-product then x is M -product

To prove (b),first we will prove that M(x0) ⊆ x0Ux0 , Let h ∈ M(x0) so there is
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h ∈Mα(x0) for some α < κ then from part (d), h ∈ x0Ux0 .

Let x0 · ... · xn be an M-product, then x0 · ... · xn ∈ M(x0). But M(x0) ⊆ x0Ux0

then x0 · ... · xn ∈ x0Ux0 so, x1 · ... · xn ∈ Ux0 . Then from (∗)

f(x0 · ... · xn) = f(x0)f(x1 · ... · xn).

In the same way M(x1) ⊆ x1Ux1 , so x1 · ... · xn ∈ x1Ux1 ⇒ x2 · ... · xn ∈ Ux1 . Then

from (∗)

f(x1 · ... · xn) = f(x1)f(x2 · ... · xn).

Thus

f(x0 · ... · xn) = f(x0)f(x1 · ... · xn) = f(x0)f(x1)f(x2 · ... · xn).

Continue in this process we have

f(x0 · ... · xn) = f(x0)f(x1)f(x2) · ... · f(xn).

We now construct h : X → R.

Since D = dom(M) is subset of X \ {e} then for every x ∈ D, choose h(x) =

g−1(f(x)). Since each element in X \ {e} can be decomposed into an M-product

then we can extend h over X by

h(x0 · ... · xn) = h(x0) · ... · h(xn),

where x0 · ... · xn is an M−product. Now for every x ∈ D we have (g ◦ h)(x) =

g(h(x)) = g(g−1(f(x))) = f(x) so (g ◦ h)|D = f |D.

Since g is a homomorphism, then

gh(x0 · ... · xn) = g(h(x0) · ... · h(xn))

= gh(x0) · ... · gh(xn)

= f(x0) · ... · f(xn)

= f(x0 · ... · xn),

and so f = g ◦ h.

To see that h is a local homomorphism, let x ∈ X \{e} be given and let x0 · ... ·xn
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be the decomposition of x into an M−product. For each i ≤ n, one has xi ·...·xn ∈

M(xi). Define

Vx =
⋂
i≤n

(xi · ... · xn)−1M(xi)

Since G is a group and (xi · ... ·xn) ∈ G, then (xi · ... ·xn)−1 ∈ G. Sinse xi · ... ·xn ∈

M(xi) for all i ≤ n, then e = (xi · ... · xn)−1(xi · ... · xn) ∈ (xi · ... · xn)−1M(xi) for

all i ≤ n so,e ∈ Vx.

Since M(xi) is open and τ is a left invariant topology on G then (xi·...·xn)−1M(xi)

is open for all i ≤ n Since the finite intersection of open sets is open then Vx is

open .Therefore Vx is neighborhood of e.

Let y ∈ Vx \ {e}, and y = y0 · ... · ym the decomposition of y into an M−product.

Then for each i ≤ n y = (xi · ... · xn)−1t where t ∈ M(xi). Thus for all i ≤ n, we

have (xi · ... ·xn)y = (xi · ... ·xn)(xi · ... ·xn)−1t = et = t ∈M(xi). If i = 0 it follows

that x0 · ... · xny0 · ... · ym is an M-product and we see that

h(xy) = x0 · ... · xny0 · ... · ym

= h(x0) · ... · h(xn)h(y0) · ... · h(ym)

= h(x)h(y).

3.3 Finite groups in Stone-Čech compactifica-

tion

Theorem 3.3.1. [17] Let κ be an infinite cardinal. For every ordinal α < κ, let

Gα be a nontrivial group, G =
⊕

α<κGα, let

H =
⋂
α<κ

{c`βG{x ∈ G \ {e} : min supp(x) ≥ α}}.

Then H contains no nontrivial finite group.

Proof. Assume, on the contrary, that there is a nontrivial finite group Q in H. If

Q is not cyclic then we can find cyclic subgroup G in H generated by any element
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in Q, so we will consider Q as a cyclic group. Let u be the identity of Q. Consider

the subset

S = {x ∈ G∗ : xQ = Q}.

In G∗ clearly Q is a left ideal of S, because for all x ∈ S, xQ = Q so SQ = Q.

To show that it is minimal, let t ∈ Q then St ⊆ Q. Now let h ∈ Q. Since Q is a

group, then t−1 ∈ Q. Thus h = ht−1t ∈ St, since ht−1 ∈ S. Since t was arbitrary

then from Lemma 1.1.27 it is minimal.

Also S can be defined as

S = {x ∈ G∗ : xu ∈ Q}.

To prove this let x ∈ G∗ such that xu ∈ Q, and let t ∈ xQ, then t = xh, h ∈ Q.

Since u is the identity and Q is abelain then t = xhu = xuh ∈ Q, so xQ ⊆ Q.

Since Q is group, then it is minimal and hence xQ = Q.

Conversely let x ∈ G∗ such that xQ = Q then xu ∈ Q.

We will prove that S is a closed subsemigroup in G∗, and S1 is left saturated in

βG.

To check that S is a subsemigroup, let x, y ∈ S. Then (xy)Q = x(yQ) = xQ = Q.

Since x, y ∈ G∗, then xy ∈ G∗, and so, xy ∈ S.

To see that S is closed, let σ = ρu|G∗ . Since the function ρu : βG→ βG is defined

by ρu(x) = xu, then for all x ∈ G∗, σ(x) = xu. Hence, σ−1(Q) = {x ∈ G∗ : xu ∈

Q}= S. Since τ is T1 topology, then any finite set is closed which implies Q is

closed. Since σ is continuous function, and Q is closed of G∗, then S = σ−1(Q)

is closed.

To see that S1 is left saturated, Suppose to contrary S1 is not left saturated, then

(βG)S1 ∩ S1 6= φ so, there is x ∈ βG such that xy = z for some y, z ∈ S1. Thus

xyQ = zQ. Since zy ∈ S1, then yQ = Q and zQ = Q so, xQ = xyQ = zQ = Q.

Suppose to contrary that x ∈ G \ {e}. Since Q ⊆ H = Ult(τ0), then for all

ultrafilter p ∈ Q we have P → e. Since λx is continuous, for all x ∈ G \ {e},

then xp −→ x. But xQ = Q, then xp −→ e for all p ∈ Q. contradiction. Hence

x /∈ G \ {e}. Hence x ∈ S1 which is a contradiction.

By Proposition 3.1.16, there is a regular left invariant topology τ on G with
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Ult(τ) = S.

Since Q is a minimal left ideal, there is only one minimal right ideal of S. To

prove this suppose by contrary there exist two minimal right ideals R1 and R2

of S such that R1 6= R2. Since Q is a minimal left ideal, then by Theorem 1.1.28

K(S) = QR1 = QR2.

Let a ∈ R1, be arbitrary and let q ∈ Q then qa ∈ QR1 so, qa = q′b for some

q′ ∈ Q, and b ∈ R2. Since Q is group, then q−1 exist. Thus, a = q−1q′b ∈ QR2.

Since a was arbitrary then R1 ⊆ QR2 = K(S). But K(S) is the smallest ideal of

S then R1 = K(S). ...............(1)

In the same way we can prove that R2 ⊆ QR1 = K(S). Thus R2 = K(S) because

K(S) is the smallest ideal. ..........(2)

From (1) and (2), we have R1 = R2 which is a contradiction.

Since S have only one minimal right ideal Then by Lemma 3.1.10, τ is extremally

disconnected. Being regular extremally disconnected, τ is zero-dimensional.

Next, for every p ∈ Q, put

Sp = {x ∈ S : xu = p}.

Claim: {Sp : p ∈ Q} is a closed partition of S

(a) To show tat
⋃
Sp = S, let x ∈ S, then xu ∈ Q. So, xu = p for some p ∈ Q.

Thus, x ∈ Sp so S ⊆
⋃
Sp. Since Sp ⊆ S for all p ∈ Q, then

⋃
Sp ⊆ S.

(b) If Sp ∩ Sq 6= φ for some p, q ∈ Q, then there is x ∈ Sp ∩ Sq so xu = p and

xu = q so, ρu(x) = p and ρu(x) = q so p = q which implies that Sp = Sq.

(c) To show that Sp is closed, let σ = ρu|G∗ , then Sp = σ−1{p}. Since τ is T1

topology then any finite set is closed so {p} is closed. Since σ is continuous

function, and p is closed of G∗, then Sp is closed.

Now for all p ∈ Q, we have pu = p, because u is the identity of Q. Thus, p ∈ Sp
for all p ∈ Q. Since Sp is closed, then from Theorem 3.1.14 we can find Fp the

filter on G with F̂p = Sp. For every p ∈ Q, Sp ∩ Sq = φ. If p 6= q so, F̂p ∩ F̂q = φ.

Thus there is Vp ∈ Fp, and Vq ∈ Fq, such that Vp∩Vq = φ. Now we will show that
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for each p ∈ Q, there is a Wp ∈ Fp where

WpSq ⊆ V̂pq

for all q ∈ Q.

Let τ = ρu|βG\{e}. Then τ−1(pq) = {x ∈ S : rhou(x) = pq}={x ∈ S : xu = pq}

= Spq. Since Vpq ∈ Fpq ⇒ F̂pq ⊆ V̂pq so, τ−1(pq) = Spq = F̂pq ⊆ V̂pq. Since

ρu(pq) = pqu, then pq ∈ Spq. But Spq is closed so, there is Cpq ∈ pq such that

pq ∈ Ĉpq ⊆ Spq.

Now

τ−1(Ĉpq) = {x ∈ βG \ {e} : xu ∈ Ĉpq}

= {x ∈ βG \ {e} : xu ∈ Spq}

= {x ∈ βG \ {e} : xu ∈ τ−1(pq)}

= {x ∈ βG \ {e} : τ(xu) = pq}

= {x ∈ βG \ {e} : xuu = pq}

= {x ∈ βG \ {e} : xu = pq} = τ−1(pq) ⊆ V̂pq.

Next, we will prove that there is a Wp ∈ Fp such that Wpq ⊆ Ĉpq for all q ∈ Q.

Let q ∈ Q. Since Spu = {xu : x ∈ Sp} = {p}, then F̂pq = Spq = Spuq = pq.

Since Fp ∈ F̂p, then Fpq = pq so, Cpq ∈ Fpq, hence from Theorem 2.2.18 there

is Wq = {x ∈ S : x−1Cpq ∈ q} ∈ Fp. To show that Wqq ⊆ Ĉpq let x ∈ Wq then

x−1Cpq ∈ q ⇒ Cpq ∈ xq ⇒ xq ∈ Ĉpq. thus Wqq ⊆ Ĉpq. Let Wp =
⋂
q∈QWq, since

Q is finite, then Wp ∈ Fp. Also, Wpq ⊆ Wqq ⊆ Ĉpq. for all q ∈ Q.

Since Squ = {xu : x ∈ Sq} = {q}, then

WpSqu = Wpq ⊆ Ĉpq,

Since WpSqu = {xu : x ∈ WpSq} ⊆ Ĉpq, then WpSq ⊆ {x ∈ βG {e} : xu ∈ Ĉpq} ⊆

V̂pq.

Since Wp ∈ Fp, and Vp ∈ Fp, where Fp is a filter then Wp

⋂
Vp ∈ Fp, and

Wp

⋂
Vp 6= φ. Since WpSq ⊆ V̂pq, then (Wp

⋂
Vp)Sq ⊆ V̂pq. So we can choose

the subsets Wp such that

Wp = Wp

⋂
Vp ⊆ Vp
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and

X =
⋃
p∈Q

Wp ∪ {e}

is open in τ. Then define f : X → Q by

f(x) = p if x ∈ Wp,

since Wp ⊆ Vp, and Vp ∩ Vq = φ. If p 6= q, then Wp ∩Wq = φ for all p 6= q and

hence f is well defined.

To show that f is a local homomorphism let x ∈ X \ {e}, then x ∈ Wp for some

p ∈ Q. For each q ∈ Q, choose Ux,q ∈ Fq such that

Ux,q ⊆ Wq and xUx,q ⊆ Vpq.

To show this, let x ∈ Wp Since WpSq ⊆ V̂pq, then WpF̂q ⊆ V̂pq. But x ∈ Wp

and, Fq ∈ F̂q then xFq ∈ WpF̂q ⊆ V̂pq. So, xFq ∈ V̂pq; that is, Vpq ∈ xFq.

Thus from Theorem 2.2.18 x−1Vpq ∈ Fq. Let Mx,q = x−1Vpq, then Mx,q ∈ Fq.

Also, xMx,q = Vpq. Since Mx,q ∈ Fq, and Wq ∈ Fq, then Mx,q ∩ Wq 6= φ. Let

Ux,q = Mx,q ∩Wq, then Ux,q ⊆ Wq. Moreover, xUx,q ⊆ xMx,q = Vpq.

Since X is open and e ∈ X then there exist a neighborhood Ux of e such that

U ⊆ X =
⋃
p∈QWp ∪ {e}. Since τ is a left invariant topology then xUx ∈ τ. So,

xUx is a a neighborhood of x and xUx ⊆ X. Since Ux,q ⊆ Wq, then we can choose

a neighborhood Ux of e ∈ X such that

Ux ⊆
⋃
q∈Q

Ux,q ∪ {e} and xUx ⊆ X

Now, let y ∈ Ux \ {e}. Then y ∈ Ux,q for some q ∈ Q. Since xUx,q ∈ V pq, one

has xy ∈ V pq. But then, since Vp ∩ Vq = φ, Wp ∩Wq = φ for all p 6= q. Since

xUx ⊆ X, and xy ∈ V pq it follows that, xy ∈ Wpq. Hence

f(xy) = pq = f(x)f(y).

Let f ∗ : Ult(τ)→ Q. Now for each q ∈ Q, f ∗(q) = f ∗(Limx→qx) =limx→qf(x)=

limx→q(q) = q so f ∗ is a coretraction.

On the other hand, let R be a cyclic group of order |Q|2, and let g : R→ Q be a
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surjective homomorphism. By Proposition 3.2.6, there is a local homomorphism

h : X → R such that f = g ◦ h. Since h : X → R, then h∗ : Ult(τ) → R so,

g ◦ h∗ : Ult(τ)→ Q.

Moreover, since f = g ◦ h, then g ◦ h∗(q) = g(h∗(q)) = g(h∗(Limx→qx) =

g(limx→qh(x)) = limx→qg ◦ h = limx→qf(x) = f ∗(q). It follows that f ∗ = g ◦ h∗.

Since g is surjective homomorphism then by first isomorphism TheoremR/Ker(g) =

Q so |R/Ker(g)| = |Q|. But |R/Ker(g)| = |R|
|Ker(g)| = |Q|2

|Ker(g)| , hence |Ker(g)| =

|Q|.

Since f ∗ is a coretraction, g is a coretraction as well. However, this is false because

R has only one subgroup of order |Q| and it is the kernel of g.

Corollary 3.3.2. [17] Let κ be an infinite cardinal, and G =
⊕

κ Z2. Then

Hκ =
⋂
α<κ

{c`βG{x ∈ G \ {0} : min supp(x) ≥ α}.

contains no nontrivial finite group.
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Chapter 4

Discrete Groups in βN

4.1 Copies of Z

In this section we will show that there are 2c discrete copies of Z in each of the

maximal groups in the smallest ideal of (βN,+), and that any two of these meet

only on the identity. Recall that c is cardinal number of R.

Definition 4.1.1. The discrete copy of Z is a countably infinite discrete space

homomorphic to Z.

Recall that we take the points of βN to be the ultrafilters on N, the principal

ultrafilters being identified with the points of N.[5] Given A ⊆ N, Â = c`A =

{p ∈ βN : A ∈ p}. The set {Â : A ⊆ N} is a basis for the open sets (as well as a

basis for the closed sets) of βN.

Remark 4.1.2. A fundamental topological property of βN which we shall need,

is that every neighborhood U ⊆ βN of an ultrafilter p ∈ βN satisfies U ∩ N ∈ p.

We write N∗ for βN \N and denote the set of finite nonempty subsets of a set

X by Pf (X). Also, ω = N ∪ {0}.

Definition 4.1.3. [4] Let p be an idempotent in βN, then we define the set

H(p) =
⋃
{G : G is a subgroup of βN and p ∈ G}
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Theorem 4.1.4. [4] Let p be an idempotent in βN. Then H(p) is the largest

subgroup of βN with p is an identity.

Theorem 4.1.5. [4] Let S be a semigroup. If there is a minimal left ideal of S

which has an idempotent p then the following are equivalent.

(a) p ∈ K(S) where k(S) is the smallest ideal of S.

(b) pSp = H(p).

If we apply Theorems 4.1.4 and 4.1.5 on βN we conclude that if q is an idem-

potent of βN and q ∈ K(βN), then q + βN + q= H(q) with identity q.

[4]In βN there are 2c minimal right ideals and 2c minimal left ideals, and conse-

quently 2c maximal groups in the smallest ideal.

Recall that if p and q in βN and A ⊆ N, A ∈ p+q if and only if {x ∈ N : −x+A ∈

q} ∈ p, where −x+ A = {y ∈ N : x+ y ∈ A}.

Definition 4.1.6. [6] Given x ∈ N, we define supp(x) is the H ∈ Pf (ω). such

that x =
∑

t∈H 2t and this representation is unique.

Definition 4.1.7. [6] H =
⋂∞
n=1 2nN

Theorem 4.1.8. [4] The set H is compact subsemigroup in (βN,+).

Lemma 4.1.9. [4] Let q be an idempotent in (βN,+). Then for every n ∈ N,

nN ∈ q

From lemma 4.1.9 we can show that all idempotents of (βN,+) lie in H.

A topological space is said to be σ−compact if it is the union of countably many

compact subspaces.

Theorem 4.1.10. [4] Let S be a discrete space and let A and B be σ−compact

subsets of βS. If A ∩ c`B = c`A ∩B = φ, then c`A ∩ c`B = φ

Remark 4.1.11. If y ∈ 2sN for some s ∈ N, then min supp(y) ≥ s.

Proof. Let s ∈ N, and let y ∈ 2sN, then y = 2sm for some m ∈ N. So, there

is H ∈ Pf (ω) such that m =
∑

t∈H 2t. Thus y = 2s
∑

t∈H 2t =
∑

t∈H 2t+s. Since

t ≥ 0 for all t ∈ H then 2t+s ≥ 2s. Hence min supp(y) ≥ s.
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Theorem 4.1.12. [6] Let A and B be infinite disjoint subsets of N. Let q =

q + q ∈ βK(βN), let u ∈ N∗ ∩ c`{2n : n ∈ A}, and let v ∈ N∗ ∩ c`{2n : n ∈ B}.

Let ϕ and ψ be the homomorphisms from Z into the group q + βN + q such that

ϕ(1) = q + u + qand ψ(1) = q + v + q. Then c`{ϕ(n) : n ∈ Z \ {0}} ∩ c`{ψ(n) :

n ∈ Z \ {0}} = φ.

If q /∈ c`{ϕ(n) : n ∈ Z \ {0}}, then {ϕ(n) : n ∈ Z \ {0}} is a discrete copy of Z.

If q /∈ c`{ψ(n) : n ∈ Z \ {0}}, then {ψ(n) : n ∈ Z \ {0}} is a discrete copy of Z.

Proof. First we will show that ψ(1) ∈ H. Since q is an idempotent then q ∈ H.

Since H is semigroup then it is enough to show that v ∈ H. Since v ∈ c`{2n : n ∈

B}, then there is sequence Xm ∈ {2n : n ∈ B} such that limm→∞ 2m = v. where

m ∈ B. Let k ∈ N be fixed. for all m ≥ k, 2k | 2m that is there is rm ∈ N such

that 2krm = 2m. Hence v = limm→∞ 2m = limm≥k 2m = limm≥k 2krm. Therefore

v ∈ 2kN. Since k was arbitrary then v ∈ H. So, ψ(1) ∈ H and consequently

ψ(n) ∈ H for all n ∈ Z that is ψ(Z) ⊆ H. In the same way we can show that

ϕ(Z) ⊆ H.

Now We show that for any m ∈ Z and any n ∈ N,

{x ∈ N : |supp(x) ∩ A| ≡ 0 (mod n)} ∈ ψ(m) and

{x ∈ N : |supp(x) ∩B| ≡ 0 (mod n)} ∈ ϕ(m).

It suffices to establish the first statement. Let n ∈ N, and let C = {x ∈ N :

|supp(x)∩A| ≡ 0(mod n)}. We show first that C ∈ q. For each i ∈ {0, 1, 2, ..., n−

1} Let Ai = {x ∈ N : |supp(x) ∩ A| ≡ i(mod n)} then the collection of sets

{A0, ..., An−1} is partition of N. To show this let x ∈ N. Since the set {0, 1, 2, ..., n−

1} is complete residue system modulo n then |supp(x)∩A| ≡ i(mod n) fore some

i ∈ {0, 1, 2, ..., n − 1}, hence x ∈ Ai. So, N ⊆
⋃n−1
i=0 Ai. Since each Ai ⊆ N, then⋃n−1

i=0 Ai ⊆ N. Therefore
⋃n−1
i=0 Ai = N.

Suppose by contrary there is x ∈ Ai ∩ Aj for some 0 ≤ i < j ≤ n − 1 then

|supp(x) ∩ A| ≡ i(mod n) and |supp(x) ∩ A| ≡ j(mod n) which implies that

i ≡ j(mod n) which is a contradiction.

Now we will prove that one of Ai ∈ q. Suppose by contrary it is not true then
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Aci ∈ q for all i. Thus
⋂n−1
i=0 A

c
i ∈ q. But N =

⋃n−1
i=0 Ai, then φ = Nc =

⋂n−1
i=0 A

c
i ∈ q,

contradiction. Therefore we can choose i ∈ {0, 1, 2, ..., n−1} such that D = {x ∈

N : |supp(x) ∩ A| ≡ i (mod n)} ∈ q. Since q = q + q, then D ∈ q + q. So,

{x ∈ N : −x + D ∈ q} ∈ q. Hence, {x ∈ N : −x + D ∈ q} ∩ D 6= φ so, we

can pick x ∈ D such that −x + D ∈ q. Let t = max supp(x). From Lemma

4.1.9, since q is an idempotent, then 2t+1N ∈ q. Since q is an ultrafilter, then

(−x+D) ∩D ∩ 2t+1N 6= φ. Pick y ∈ (−x+D) ∩D ∩ 2t+1N.

we will show that |supp(x + y)| =|supp(x)| + |supp(y)|. Since y ∈ 2t+1N, and

t = max supp(x), then from Remark 4.1.11 |supp(x)| ∩ |supp(y)| = φ. Let H1,H2

and H3 ∈ Pf (w) such that x =
∑

t∈H1
2t ,y =

∑
s∈H2

2s, and x + y =
∑

r∈H3
2r.

Since H1 and H2 are finite then x + y =
∑

t∈H1
2t +

∑
s∈H2

2s =
∑

k∈H1∪H2
2k.

From definition of supp(x + y), we have
∑

r∈H3
2r =

∑
k∈H1∪H2

2k. Then H3 =

H1 ∪ H2. Since H1 ∩ H2 = φ, then |H3|= |H1| + |H2|; that is, |supp(x + y)|

=|supp(x)|+ |supp(y)|. Hence |supp(x+ y) ∩A| =|supp(x) ∩A|+ |supp(y) ∩A|.

Since y ∈ (−x+D), then y + x ∈ D so, i ≡ |supp(x+ y) ∩ A|= |supp(x) ∩ A|+

|supp(y) ∩ A| = i+ i (mod n) so, i = 0, that is; D = C.

Now we show by induction on m ∈ ω that C ∈ ψ(m). Since q is the identity of

the group q + βN + q, then ψ(0) = q. Hence C ∈ ψ(0). Assume that m ∈ ω and

C ∈ ψ(m). Now

ψ(m) = ψ(1) + ....+ ψ(1) m times

= q + v + q + q + v + q + ...+ q + v + q m times

= q + v + q + v + q + ...+ q + v + q since q + q = q

So,

ψ(m+ 1) = ψ(1) + ....+ ψ(1) m+ 1 times

= q + v + q + q + v + q + ...+ q + v + q + q + v + q m+ 1 times

= q + v + q + v + q + ...+ q + v + q + v + q since q + q = q

= ψ(m) + v + q.

Hence we will show that C ∈ ψ(m)+v+q. First we prove C ⊆ {x ∈ N : −x+C ∈

v+ q}, so, let x ∈ C and let t = max supp(x). We claim that for s > t and s ∈ B
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we have C ∩ 2s+1N ⊆ −2s + (−x + C). So, let y ∈ C ∩ 2s+1N. Since s > t, then

|supp(x+y)∩A| =|supp(x)∩A|+ |supp(y)∩A|. Since A and B are disjoint, then

s /∈ A. Since supp(2s) = {s}, then supp(2s) ∩A = φ so, |supp(x+ 2s + y) ∩A| =

|supp(x + y) ∩ A|. Since x an y ∈ C, then |supp(x) ∩ A| ≡ |supp(y) ∩ A| ≡ 0.

Hence |supp(x+ 2s + y)∩A| = |supp(x)∩A|+ |supp(y)∩A| ≡ 0 mod( n). Thus

x+ 2s + y ∈ C. that is y ∈ −2s + (−x+ C).

Since q is an idempotent then by lemma 4.1.9, 2s+1N ∈ q so, C ∩ 2s+1N ∈ q,

and then −2s + (−x + C) ∈ q. Thus {2s : s ∈ B and s > t} ⊆ {z ∈ N :

−z + (−x + C) ∈ q}. Since {2s : s ∈ Bands > t} ∈ v, and v is an ultrafilter,

then {z ∈ N : −z + (−x + C) ∈ q} ∈ v. Therefore −x + C ∈ v + q. which

implies C ⊆ {x ∈ N : −x + C ∈ v + q}. By induction hypotheses C ∈ ψ(m),

and ψ(m) is an ultrafilter, so {x ∈ N : −x + C ∈ v + q} ∈ ψ(m), that is;

C ∈ ψ(m) + v + q = ψ(m+ 1).

To complete this portion of the proof, we let m ∈ N and show that C ∈ ψ(−m).

Since the sets {A0, ..., An−1} is partition of N, and ψ(−m) is an ultrafilter, then we

can pick i ∈ {0, 1, ..., n−1} such that D = {x ∈ N : |supp(x)∩A| ≡ i (mod n)} ∈

ψ(−m). Since ψ(0) = q, then C ∈ q = ψ(0) = ψ(m + (−m)) = ψ(m) + ψ(−m)

so, {x ∈ N : −x + C ∈ ψ(m)} ∈ ψ(−m). Hence D ∩ {x ∈ N : −x + C ∈

ψ(m)} 6= φ. So, pick x ∈ D such that −x + C ∈ ψ(m). Let t = max supp(x).

Since ψ(m) ∈ H and (−x + C) ∩ C ∈ ψ(m) so, c`((−x + C) ∩ C) ∩ 2t+1N 6= φ.

Thus there is a principal ultrafilter y in 2t+1N such that (−x + C) ∩ C ∈ y,

that is; y ∈ (−x + C) ∩ C ∩ 2t+1N. Since t = max supp(x) and y ∈ 2t+1N, then

|supp(x+ y)| = |supp(x)|+ |supp(y)|. Since y ∈ −x+ C, then x+ y ∈ C. Hence

0 ≡ |supp(x+ y) ∩A|= |supp(x) ∩A|+ |supp(y) ∩A| ≡ i+ 0 mod( n), so i = 0.

That is D = C.

By a nearly identical proof, one can also establish that for any m ∈ Z, and any

n ∈ N

{x ∈ N : |supp(x) ∩ A| ≡ m (mod n)} ∈ ϕ(m) and

{x ∈ N : |supp(x) ∩B| ≡ m (mod n)} ∈ ψ(m).

Notice in particular that this shows that if k 6= m in Z, then ϕ(m) 6= ϕ(k)
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because we can find n ∈ N such that k an m are not congruence mod n. So,

Um = {x ∈ N : |supp(x)∩A| ≡ m mod( n) } ∈ ϕ(m) and Um /∈ ϕ(k). In the same

way we can show that ψ(m) 6= ψ(k) if m 6= K.

Now suppose that c`{ϕ(n) : n ∈ Z \ {0}} ∩ c`{ψ(n) : n ∈ Z \ {0}} 6= φ. Then

by Theorem 4.1.10, either {ϕ(n) : n ∈ Z \ {0}} ∩ c`{ψ(n) : n ∈ Z \ {0}} 6= φ

or {ψ(n) : n ∈ Z \ {0}} ∩ c`{ϕ(n) : n ∈ Z \ {0}} 6= φ. Assume without loss of

generality, that the former holds and pick m ∈ Z\{0} such that ϕ(m) ∈ c`{ψ(n) :

n ∈ Z \ {0}}. Since U = {x ∈ N : |supp(x) ∩ A| ≡ m (mod |m| + 1)} ∈ ϕ(m),

then c`U is a neighborhood of ϕ(m). We claim that c`U ∩ {ψ(n) : n ∈ Z} = φ.

Suppose by contrary it is not true and pick n ∈ Z such that ψ(n) ∈ c`U. Then

U ∈ ψ(n), and S = {x ∈ N : |supp(x) ∩ A| ≡ 0 (mod |m| + 1)} ∈ ψ(n).

Since ψ(n) is an ultrafilter, then U ∩ S 6= φ. So, there exist x ∈ N such that

|supp(x)∩A| ≡ 0 ≡ m (mod |m|+1)} contradiction. So, c`U∩{ψ(n) : n ∈ Z} = φ.

then ϕ(m) /∈ c`{ψ(n) : n ∈ Z \ {0}}. Contradiction.

To complete the proof, we may assume that q /∈ c`{ϕ(n) : n ∈ Z \ {0}}. Pick a

neighborhood U of q which misses {ϕ(n) : n ∈ Z \ {0}}. Given n ∈ Z \ {0}, since

q = ϕ(0) = ϕ(n + (−n)) = ϕ(n) + ϕ(−n) then U is a neighborhood of ϕ(n) +

ϕ(−n). Let Â be a basic neighborhood of ϕ(n)+ϕ(−n), such that ϕ(n)+ϕ(−n) ∈

Â ⊆ U, then A ∈ ϕ(n) +ϕ(−n); that is, B = {x ∈ N : −x+A ∈ ϕ(−n)} ∈ ϕ(n).

We claim that B̂ + ϕ(−n) ⊆ Â. Let P + ϕ(−n) ∈ B̂ + ϕ(−n) where p ∈ B̂, then

B = {x ∈ N : −x + A ∈ ϕ(−n)} ∈ p which implies that A ∈ p + ϕ(−n). Hence

B̂+ϕ(−n) ⊆ U. We claim that B̂ ∩{ϕ(m) : m ∈ Z \ {n}} = φ, otherwise if there

is m ∈ Z\{n} such that ϕ(m) ∈ B̂, then ϕ(m) +ϕ(−n) ⊆ B̂+ϕ(−n) ⊆ U. Thus

ϕ(m − n) ∈ U. which is a contradiction. Hence B̂ ∩ {ϕ(m) : m ∈ Z} = {ϕ(n)}

so {ϕ(n)} is open in the subspace generated by {ϕ(n) : n ∈ Z}. So, it is discrete

copy of Z.

Corollary 4.1.13. [6] Let q = q+q ∈ K(βN). For each p ∈ N∗∩{2n : n ∈ N} let

ϕp be the homomorphism from Z to the group q+βN+q for which ϕp(1) = q+p+q.

If p 6= r ∈ N∗ ∩ {2n : n ∈ N}, then c`{ϕp(n) : n ∈ Z \ {0}} ∩ c`{ϕr(n) : n ∈

Z \ {0}} = φ and for all but at most one p ∈ N∗, {ϕp(n) : n ∈ Z is a discrete

copy of Z.
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Proof. let p 6= r ∈ N∗∩{2n : n ∈ N}. Since p 6= r, then there is disjoint subsets A

andB of N such that A ∈ p andB ∈ r. Since p ∈ {2n : n ∈ N}, then {2n : n ∈ N}∩

N ∈ p, hence, {2n : n ∈ A} = {2n : n ∈ N} ∩ N ∩ A ∈ p. In the same way we can

show that {2n : n ∈ B} = {2n : n ∈ N} ∩ N ∩B ∈ r.

Now if we applied the Theorem 4.1.12 on the homomorphisms ϕp(n) and ϕr(n)

we get c`{ϕp(n) : n ∈ Z \ {0}} ∩ c`{ϕr(n) : n ∈ Z \ {0}} = φ.

Suppose by contrary there is two element p, r ∈ N∗, and p 6= r such that q ∈

c`{ϕp(n) : n ∈ Z \ {0}}, and q ∈ c`{ϕr(n) : n ∈ Z \ {0}}, then c`{ϕp(n) : n ∈

Z \ {0}} ∩ c`{ϕr(n) : n ∈ Z \ {0}} 6= φ which is a contradiction. So, there is at

most one p ∈ N∗, such that p ∈ c`{ϕr(n) : n ∈ Z \ {0}}. Hence from Theorem

4.1.12 we conclude that for all but at most one p ∈ N∗, {ϕp(n) : n ∈ Z} is a

discrete copy of Z.

4.2 Discrete free groups and semigroups in N∗

Recall that we say a group G is generated by a subset S, if every element of the

group can be expressed as the combination (under the group operation) of finitely

many elements of the subset S and their inverses.

Definition 4.2.1. [18] A group F is called free if there is a subset S of F such

that any element of F can be written in one and only one way as a product of

finitely many elements of S and their inverses.

Construction[18] The free group F with free generating set S can be con-

structed as follows. S is a set of symbols and we suppose for every s in S,

there is a corresponding ”inverse” symbol, s−1, in a set S−1. Let T = S ∪ S−1,

and define a word in S to be any written product of elements of T. The empty

word is the word with no symbols at all. For example, if S = {a, b, c}, then

T = {a, a−1, b, b−1, c, c−1} and abc−1ca−1c is a word in S. If an element of S lies

immediately next to its inverse, the word may be simplified by omitting the s, s−1

pair:

abc−1ca−1c −→ aba−1c.
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A word that cannot be simplified further is called reduced The free group F is

defined to be the group of all reduced words in S. To illustrate the operation

group on F we give an example.

(ab−3a−2b2).(b−2a3b−4c) = (ab−3ab−4c).

Theorem 4.2.2. [4] Let (S, .) be a semigroup, A ⊆ P(S) have the finite intersec-

tion property . Let (T, .) be a compact right topological semigroup and ϕ : S → T

satisfy ϕ(S) ⊆ Λ(T ). Assume that there is some A ∈ A such that for each x ∈ A,

there exist B ∈ A for which ϕ(x.y) = ϕ(x).ϕ(y) for every y ∈ B. Then for all

p, q ∈
⋂
A∈A Â, ϕ̂(p.q) = ϕ̂(p).ϕ̂(q).

Lemma 4.2.3. [4] Let A be a set and let F be the free group generated by A, let

G be an arbitrary group and let ϕ : A → G be any mapping . There is a unique

homomorphism ϕ̂ : F → G for which ϕ̂(g) = ϕ(g) for every g ∈ A.

Theorem 4.2.4. [4] Let A be a set, and let F be the free group generated by A.

Then F can be embedded in a compact topological group. This means that there

is a compact topological group C and a one to one homomorphism ϕ : F → C.

Corollary 4.2.5. [6] There is a compact topological group C which contains a

free group F on the distinct generators {a1, a2, a3, a4}.

Proof. Let A = {a1, a2, a3, a4}. Then by above theorem, here is a compact topo-

logical group C and a one to one homomorphism ϕ : F → C.

Lemma 4.2.6. [6] Let C and F be as in Corollary 4.2.5. Let A1, A2, A3, and A4

be pairwise disjoint infinite subsets of N and let q ∈ K(βN). For i ∈ {1, 2, 3, 4}

pick

ui ∈ N∗ ∩ c`{2n : n ∈ Ai}

and let ri = q + ui + q. Let G be the subgroup of q + βN + q generated by

{r1, r2, r3, r4}. There is a continuous homomorphism σ : {0} ∪ H → C such

that σ|G is an isomorphism onto F and σ(ri) = ai for each i ∈ {1, 2, 3, 4}.

Proof. Denote the identity of C by e. Since each n ∈ ω, can be expressed uniquely

as n =
∑

i∈H 2i, where H ∈ Pf (ω) then define f : ω → C as follows. For n ∈ ω,
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f(2n) =

 ai, n ∈ Ai
e, n /∈

⋃4
i=1Ai.

Given L ∈ Pf (ω), f(
∑

n∈L 2n) =
∏

n∈L f(2n) where the product is taken in

increasing order of indices. And f(0) = e. Let f̃ : βω → C be the continuous

extension of f, and let σ be the restriction of f̃ to {0}∪H. Now we will show that

σ is a homomorphism. Since C is a compact topological group then Λ(C) = C.

Take the collection A = {2nω : n ∈ N}. Let F = Pf (ω), and let S = ∩k∈F2kw.

We claim that S 6= φ. Let t = max F then for all k ∈ F, k ≥ t ⇒ 2k | 2t. So,

2t = 2km for some m ∈ N. Thus 2t ∈ S. Since F was arbitrary, then A has a

finite intersection property.

Let A = {2ω}, let x ∈ A and let t = max supp(x) then for all y ∈ B = {2tω},

min supp(y) ≥ 2t+1. Thus supp(x) ∩ supp(y) = φ which implies f(x + y) =

f(x)f(y). Therefore By Theorem 4.2.2 applied to the collection A = {2nω : n ∈

N}, σ is a homomorphism.

To see that σ[G] = F, it suffices to let i ∈ {1, 2, 3, 4}, and show that σ(ri) = ai.

Since ui ∈ c`{2n : n ∈ Ai}, then there is a sequence (xn) in {2n : n ∈ Ai} such

that xn converge to ui. Since f is constantly equal to ai on {2n : n ∈ Ai}, and

σ is continuous, we have that σ(ui) = limσ(xn) = ai. Since q + q = q, then

σ(q).σ(q) = σ(q). Since C is group then σ(q) = e. Since ri = q + ui + q. then

σ(ri) = eaie = ai.

From lemma 4.2.3, we can pick a homomorphism h : F → G, such that h(ai) = ri

for each i ∈ {1, 2, 3, 4}. Then h[F ] = G. Therefore σ ◦ h : F → F and σ ◦ h(ai) =

σ(h(ai)) = σ(ri) = ai, for each i ∈ {1, 2, 3, 4}, so σ ◦ h is the identity on F so σ

is injective.

Lemma 4.2.7. [4] N is the center of (βN,+) and (βN, .)

Theorem 4.2.8. [6] Let A1, A2, A3, A4, C, F, G, u1, u2, u3, u4, r1, r2, r3, r4, and

σ be as in Lemma (4.2.6). Let G1 be the subgroup of G generated by {r1, r2} and let

G2 be the subgroup of G generated by {r3, r4}. Then c`(G1\{q})∩c`(G2\{q}) = φ.

If i ∈ {1, 2} and q /∈ c`(Gi \ {q}), then Gi is a discrete copy of F.
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Proof. Suppose that c`(G1 {q}) ∩ c`(G2 {q}) 6= φ. By Theorem 4.1.10, either

(G1 \ {q}) ∩ c`(G2 \ {q}) 6= φ. or c`(G1 \ {q}) ∩ (G2 \ {q}) 6= φ. Assume without

loss of generality that (G1 \ {q}) ∩ c`(G2 \ {q}) 6= φ, and pick w in this intersec-

tion. We shall show that w = q. Let s1 and s2 denote the inverses of r1 and r2

in G1. Since w ∈ (G1 \ {q}), then ω can be written as a linear combination of

the elements of {r1, r2, s1, s2}. Pick m ∈ N and p1, p2, ..., pm ∈ {r1, r2, s1, s2} such

that w = p1 + p2 + ...+ pm.

Define θ : N→ ω by θ(n) = Σ{2t : t ∈ supp(n)∩ (A1∪A2)}, and let θ̂ : βN→ βω

be its continuous extension. Take the collection A = {2nω : n ∈ N}. then As in

proof of lemma 4.2.6 A has a finite intersection property. Now, let A = {2ω}, let

x ∈ A and let t = max supp(x) then for all y ∈ B = {2tω}, min supp(y) ≥ 2t+1.

Thus supp(x) ∩ supp(y) = φ so, |supp(x + y)| = |supp(x)| + |supp(y)|. Hence

|supp(x + y) ∩ (A1 ∪ A2)| = |supp(x) ∩ (A1 ∪ A2)| + |supp(y) ∩ (A1 ∪ A2)|. If

x =
∑

s∈H1
2s and y =

∑
k∈H2

2k for some H1, H2 ∈ Pf (ω), then x + y =∑
s+k∈H1∪H2

2s+k. Since supp(x)∩ supp(y) = φ, then f(x+ y) = Σ{2s+k : s+ k ∈

supp(x + y) ∩ (A1 ∪ A2)} = Σ{2s : s ∈ supp(x) ∩ (A1 ∪ A2)}+ Σ{2k : k ∈

supp(y)∩ (A1 ∪A2)}; that is, f(x+ y) = f(x) + f(y). If we consider θ : N→ βω,

then βω is a compact right topological semigroup and θ(N) ⊆ ω = Λ(βω). By

Theorem 4.2.2 θ̂|H is a homomorphism.

Also, θ̂(H) ⊆ H ∪ {0}. To show this let p ∈ H. Then p ∈ 2nN for all n ∈ N.

Fix k ∈ N, since p ∈ 2kN, then there is a sequence xs = 2ks ∈ 2kN such that xs

converge to p. Now we have two cases:

Case (1): If k /∈ A1 ∪ A2, then θ(2k) = 0. Since θ̂ is continuous, then θ̂(p) =

lim θ̂(2k)θ̂(s) = lim θ(2k)θ(s) = 0.

Case (2): If k ∈ A1∪A2, then θ(2k) = 2k. So, θ̂(p) = lim θ̂(2k)θ̂(s) = lim θ(2k)θ(s) =

lim 2kθ(s). If θ(s) = 0 for all but finitely number of xs, then lim θ(s) = 0 which

give θ̂(p) = 0. If there is infinite number of xs such that θ(s) 6= 0 then we

can find subsequence yms of xs such that θ(2km) 6= 0 for all 2km ∈ yms . Hence

θ̂(p) = lim 2kθ(m). Moreover, yms ∈ 2kN so, θ̂(p) ∈ 2kN. Since k was arbitrary,

then θ̂(p) ∈ 2nN for all n ∈ N; that is, θ̂(p) ∈ H.

For i ∈ {1, 2}, and n ∈ Ai, we have θ(2n) = 2n. So, θ is the identity on
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{2n : n ∈ Ai}. Since ui ∈ c`{2n : n ∈ Ai}, then θ̂(ui) = ui and since q + q = q,

then σ(θ̂(q)) = σ(θ̂(q)) + σ(θ̂(q)). Since C is a group, then σ(θ̂(q)) = e. Thus for

i ∈ {1, 2},

σ(θ̂(ri)) = σ(θ̂(q + ui + q))

= σ(θ̂(q)) + σ(θ̂(ui)) + σ(θ̂(q))

= eσ(ui)e

= σ(q)σ(ui)σ(q)

= σ(q + ui + q)

= σ(ri).

Since e = σ(si)σ(ri), and e = σ(θ̂(ri))σ(θ̂(ri)
−1) = σ(ri)σ(θ̂(ri)

−1) and C is a

group, then σ(θ̂(si) = σ(θ̂(r−1
i )) = σ(θ̂(ri)

−1) = σ(si).

Next we note that for i ∈ {3, 4}, and n ∈ Ai, θ(2n) = 0, because n /∈ (A1 ∪ A2).

Since ui ∈ c`{2n : n ∈ Ai}, then θ̂(ui) = 0 and since q + q = q, then θ̂(q) =

θ̂(q) + θ̂(q). Thus for i ∈ {3, 4},

σ(θ̂(ri)) = σ(θ̂(q + ui + q))

= σ(θ̂(q) + θ̂(ui) + θ̂(q))

= σ(θ̂(q) + 0 + θ̂(q))

= σ(θ̂(q)) = e.

Also, σ(θ̂(si) = σ(θ̂(ri)
−1) = e. Thus we have σ ◦ θ̂[G2] = {e}. Since w ∈ c`(G2 \

{q}), then σ(θ̂(w)) = e; that is, σ(θ̂(p1+p2+...+pm)) = e. But w ∈ (G1\{q}), then

σ(θ̂(p1+p2+...+pm)) = σ(p1+p2+...+pm) because p1, p2, ..., pm ∈ {r1, r2, s1, s2}.

Hence σ(p1 + p2 + ...+ pm) = e. from proof of lemma 4.2.6 we have σ(q) = e and

σ is an isomorphism on G so, w = p1 + p2 + ...+ pm = q which is a contradiction.

Now to complete the proof let i ∈ {1, 2} and q /∈ c`(Gi\{q}). Pick a neighborhood

U of q which misses Gi \ {q}. From lemma (4.2.3) we can find a homomorphism

h : F −→ Gi. Pick x ∈ F. Then h(e) = h(xx−1) = h(x) + h(x−1) = q. Let Â

be a basic neighborhood of h(x) + h(x−1) such that h(x) + h(x−1) ⊆ Â ⊆ U,
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then A ∈ h(x) + h(x−1). So, B = {x ∈ G : −x + A ∈ h(x−1)} ∈ h(x). We claim

that B̂ + h(x−1) ⊆ Â So, let p + h(x−1) ∈ B̂ + h(x−1). Since B = {x ∈ G :

−x + A ∈ h(x−1)} ∈ p, then A ∈ p + h(x−1). Thus p + h(x−1) ∈ Â ⊆ U. We

claim that B̂ ∩ {h(y) : y ∈ F \ {x}} = φ. Suppose by contrary it is not true and

pick y ∈ F \ {x} such that h(y) ∈ B̂ then h(y) + h(x−1) = h(yx−1) ∈ Â ⊆ U,

contradiction. Hence B̂ ∩ {h(y) : y ∈ F} = {h(x)}. then Gi is a discrete copy of

F.

Corollary 4.2.9. [6] Let q = q + q ∈ K(βN). There exist 2c copies of the free

group on 2 generators in (q+βN + q)∩H. The intersection of the closures of any

two of these is {q}.

Proof. Partition N∗ ∩ {2n : n ∈ N} into two element subsets Hα = {xα, yα} for

α < 2c. For each α < 2c, let Gα be the subgroup of q + βN + q generated by

q + xα + q, and q + yα + q. If α < β < 2c, then xα 6= yα 6= xβ 6= yβ. Pick

disjoint subsets A1, A2, A3, A4 of N such that A1 ⊆ xα, A2 ⊆ yα, A3 ⊆ xβ,

and A4 ⊆ yβ. Since {2n : n ∈ N} ∈ xα, then {2n : n ∈ A1} = {2n : n ∈

N} ∩ A1 ∩ N ∈ xα. In the same way we can show that {2n : n ∈ A2}, {2n : n ∈

A3}, {2n : n ∈ A4} are members of yα, xβ, yβ respectively. By Theorem 4.2.8

c`(Gα {q}) ∩ c`(Gβ {q}) = φ. Hence there is at most one α < 2c for which there

is some δ 6= α with c`(Gα {q}) ∩ c`(Gδ {q}) 6= φ.

Definition 4.2.10. [4] A semigroup S is weakly left cancellative if and only if for

all u, v ∈ S, {x ∈ S : xu = v} is finite.

Of course a left cancellative semigroup is weakly left cancellative . On the

other hand the semigroup (N,∨) is weakly left cancellative.

Definition 4.2.11. [14] A subset of topological space is Gδ if and only if it is

countable intersection of open sets.

Theorem 4.2.12. [4] Let S be an infinite right cancellative and weakly left can-

cellative semigroup. Then every Gδ subset of S∗ which contains an idempotent

contains a copy of H.
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Corollary 4.2.13. [6] Let S be an infinite discrete right cancellative, and weakly

left cancellative semigroup. Let U be a Gδ subset of βS \ S which contains an

idempotent. There is a set D ⊆ U of idempotents such that |D| = 2c, and for

each q ∈ D, there exist 2c copies of the free group on 2 generators in qβSq. The

intersection of the closures of any two of these is {q}.

Proof. By Theorem 4.2.12, U contains a copy of H. Since H contains all idempo-

tents of βN, then There is a set D ⊆ U of idempotents such that |D| = 2c. Now

for each idempotent q ∈ D apply Corollary 4.2.9 to get the result.

Note that one can take U = βS\S in Corollary 4.2.13, so any right cancellative

and weakly left cancellative semigroup S has these discrete copies of the free group

on 2 generators in βS \ S.

Definition 4.2.14. [9] Let X be an infinite set. A set A is a set of almost disjoint

subsets of X if and only if A ⊆ P(X), for each A ∈ A, |A| = |X|, and for A 6= B

in A, A ∩B is finite .

Note 4.2.15. [9] There is a set A of c almost disjoint subsets of N. Probably

the simplest example of a set of c almost disjoint subsets of a countably infinite

set can be obtained as follows: For each α ∈ R, choose an increasing sequence

〈xα,n〉∞n=0 in Q which converges to α. Then {{xα,n : n ∈ ω} : α ∈ R is a set of

almost disjoint subsets of Q.

Definition 4.2.16. [4] A subset D of a topological space X is strongly discrete, if

there is an indexed family 〈Ux〉x∈D such that for each x ∈ D, Ux is a neighborhood

of x, and Ux ∩ Uy = φ when x 6= y.

Theorem 4.2.17. [6] There is a strongly discrete copy of the free semigroup with

identity on c generators in H (which is therefore discrete in N∗.)

Proof. Pick an indexed family 〈Aα〉α<c of almost disjoint subsets of 2N+1. (That

can be done from note 4.2.15. For each α < c, pick pα ∈ N∗ ∩ c`{2n : n ∈ Aα}.

Since H ∩ c`{x ∈ N : supp(x) ⊆ 2N} is compact subsemigroup in βN, then from

Theorem 1.2.34 part (a), it has an idempotent. Pick q = q + q ∈ c`{x ∈ N :
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supp(x) ⊆ 2N}. For α < c, let rα = q + pα + q, and let S = {q} ∪ {rα : α < c}.

Since q is an idempotent, then q ∈ H. Since pα ∈ c`{2n : n ∈ B}, then there is se-

quence Xm ∈ {2n : n ∈ Aα} such that limm→∞ 2m = pα, where m ∈ Aα. Let k ∈ N

be fixed for all m ≥ k, 2k | 2m. That is; there is rm ∈ N such that 2krm = 2m.

Hence pα = limm→∞ 2m = limm≥k 2m = limm≥k 2krm. Therefore pα ∈ 2kN. Since

k was arbitrary, then pα ∈ H. Since H is semigroup, then rα ∈ H. So, S ⊆ H.

For each finite sequence 〈α1, α2, ..., αk〉 in c, let B(α1,α2,...,αk) = {x ∈ N : supp(x)∩

(2N + 1) = {n1, n2, ..., nk}, where n1 < n2 < ... < nk and each ni ∈ Aαi}. Now we

will prove that if k > 1, then B(α1,α2,...,αk−1) ⊆ {x ∈ N : −x + B(α1,α2,...,αk)∈rαk}.

So, let x ∈ B(α1,α2,...,αk−1). We claim that C = {y ∈ N : supp(y) ⊆ 2N} ⊆

{z ∈ N : −z + (−x + B(α1,α2,...,αk)) ∈ Pαk + q} so, let y ∈ C. We claim that

{2s : s ∈ Aαks > nk−1} ⊆ {h ∈ N : −h + (−y + (−x + B(α1,α2,...,αk))) ∈ q}. Let

t = max {max supp(y),max supp(x)}, and s ∈ Aαk . We claim that C ∩ 2t+1N ⊆

−2s + (−y + (−x + B(α1,α2,...,αk))), let w ∈ C ∩ 2t+1N. Since each of w and y

in C, then supp(w) ⊆ 2N and supp(y) ⊆ 2N. Since t ≥ max supp(y), then

supp(w)∩supp(y) = φ and supp(w)∩supp(x) = φ. Moreover, since supp(y) ⊆ 2N.

supp(x+ y)∩ 2N + 1 = (supp(x)∩ 2N + 1)∪ (supp(y)∩ 2N + 1). In the same way

supp(x+ w) ∩ 2N + 1 = (supp(x) ∩ 2N + 1) ∪ (supp(w) ∩ 2N) + 1.

Hence supp(x + y + 2s + w) ∩ 2N + 1 = (supp(x) ∩ 2N + 1) ∪ (supp(x) ∩ 2N +

1) ∪ (supp(2s) ∩ 2N + 1) ∪ (supp(w) ∩ 2N + 1) = {n1, n2, ..., nk−1} ∪ φ ∪ s

∪ φ = {n1, n2, ..., nk}, where nk = s. Thus x + y + 2s + w ∈ B(α1,α2,...,αk).

Therefore, C ∩ 2t+1N ⊆ −2s + (−y + (−x + B(α1,α2,...,αk))) Since q is an idem-

potent, then 2t+1N ∈ q. But C ∈ q, then C ∩ 2t+1N ∈ q and consequentely,

−2s + (−y + (−x + B(α1,α2,...,αk))) ∈ q. Hence {2s : s ∈ Aαks > nk−1} ⊆ {h ∈ N :

−h+ (−y + (−x+B(α1,α2,...,αk))) ∈ q}.

Since pαk ∈ c`{2n : n ∈ Aα}. then {2s : s ∈ Aαks > nk−1} ∈ pαk . So,

{−y+(−x+B(α1,α2,...,αk)) ∈ pαk+q}. Thus C ⊆ {z ∈ N : −z+(−x+B(α1,α2,...,αk)) ∈

Pαk + q}. Since C ∈ q then {z ∈ N : −z + (−x + B(α1,α2,...,αk)) ∈ Pαk + q} ∈ q.

Therefore −x+B(α1,α2,...,αk) ∈ q + Pαk + q = rαk .....(∗)

Now we will see by induction on k that for each 〈α1, α2, ..., αk〉 , B(α1,α2,...,αk) ∈

rα1 +rα2 + ...+rαk . At k = 1 we will show that C ⊆ {x ∈ N : −x+B(α1) ∈ Pα1+q}
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so, let y ∈ C. We claim that {2s : s ∈ Aα1} ⊆ {z ∈ N : −z+(−y+B(α1)) ∈ q}. Let

t = max supp(y), let s ∈ Aα1 and let w ∈ C ∩ 2t+1N. Since each of w and y in C

then supp(w) ⊆ 2N and supp(y) ⊆ 2N. Since s ∈ Aα1 then supp(y+2s+w)∩2N+

1 = {s} so, y+2s+w ∈ Bα1 . Thus C∩2t+1N ⊆ −2s+(−y+Bα1) and Consequently

−2s + (−y + Bα1) ∈ q. Hence {2s : s ∈ Aα1} ⊆ {z ∈ N : −z + (−x+ B(α1)) ∈ q}.

Since {2s : s ∈ Aα1} ∈ pα1 then {z ∈ N : −z + (−y + B(α1)) ∈ q} ∈ pα1 which

implise that −y + B(α1) ∈ pα1 + q. So, C ⊆ {x ∈ N : −x + B(α1) ∈ Pα1+q}. Since

C ∈ q then {x ∈ N : −x+B(α1) ∈ Pα1+q} ∈ q. Therefore B(α1) ∈ rα1 .

Suppose the statement is true for n = k − 1; that is, for each 〈α1, α2, ..., αk−1〉

, B(α1,α2,...,αk−1) ∈ rα1 + rα2 + ... + rαk−1
. For n = k let 〈α1, α2, ..., αk〉. From ∗,

B(α1,α2,...,αk−1) ⊆ {x ∈ N : −x + B(α1,α2,...,αk)∈rαk}. so, B(α1,α2,...,αk) ∈ rα1 + rα2 +

...+ rαk .

Let C = {x ∈ N : supp(x) ⊆ 2N}. Note that for each 〈α1, α2, ..., αk〉, C ∩

B(α1,α2,...,αk) = φ. Otherwise if there is x in the intesection then, supp(x)∩2N+1 =

φ since x ∈ C and supp(x) ∩ 2N + 1 = {n1, n2, ..., nk−1}. Since w ∈ B(α1,α2,...,αk)

contradiction.

To complete the proof we show that if 〈α1, α2, ..., αk〉 6= 〈δ1, δ2, ..., δl〉, thenB(α1,α2,...,αk)∩

B(δ1,δ2,...,δl)∩H = φ. If k 6= l, then B(α1,α2,...,αk)∩B(δ1,δ2,...,δl) = φ, otherwise if there

is w in this intersection, then |supp(w)∩ 2N + 1| = k and |supp(w)∩ 2N + 1| = l,

contradiction. So assume that k = l and pick i ∈ {1, 2, ..., k}, such that αi 6= δi.

Since Aαi∩Aδi is finite, then pick m ∈ N such that Aαi∩Aδi ⊆ {1, 2, ...,m}. Then

B(α1,α2,...,αk)∩B(δ1,δ2,...,δl)∩2m+1N = φ. To show this, suppose by contrary there is

y in the intersection, then min supp(y) = m+1. But y ∈ B(α1,α2,...,αk)∩B(δ1,δ2,...,δl)

then there is ni ∈ supp(y) such that ni ∈ Aαi ∩ Aδi so, ni ≤ m. which is a

contradiction.
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