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Abstract

In this thesis, the derivation of first and second Painlevé hierarchies and their
Hamiltonian structures are studied. The first Painlevé hierarchy is derived from
the Kadomtsev-Petviashvili hierarchy and the linear problem of that first Painlevé
hierarchy is used to derive the Hamiltonian structure of that first Painlevé hierarchy.
In addition, The Modified Korteweg-de Vries hierarchy is derived from the Korteweg-
de Vries hierarchy and the Modified Korteweg-de Vries hierarchy is used to derive a
second Painlevé hierarchy. The linear problem for the second Painlevé hierarchy are
found and the canonical coordinates for it are built. Moreover, the linear problem

is used to drive the Hamiltonian structure of that second Painlevé hierarchy.



Chapter 1
Introduction

Around the beginning of the twentieth century, the six Painlevé equations (P;-Pyy)
were discovered by Painlevé ; Gambier and their school [1] , [2] in an investigation of
nonlinear second-order ordinary differential equations whose general solutions can
not be expressed in terms of elementary and classical special functions; thus they
define new transcendental functions.

The six Painlevé equations, Pj-Py, are listed below [1] , [2]
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where «, 3, v and § are constant parameters and primes denote differentiation with
respect to z.

Painlevé transcendental functions appear in many areas of modern mathematics
and physics and they play the same role in nonlinear problems as the classical special
functions play in linear problems [2] , [3].

Ablowitz and Segur [4] demonstrated a close connection between completely in-
tegrable parial differential equations solvable by inverse scattering method. Flaschka
and Newell [5] introduced the isomonodromy deformation method, which expresses
the Painlevé equation as the compatibility condition of two linear systems of equa-
tions and are studied using Riemann-Hilbert methods [2].

In recent years there is a considerable interest in studying hierarchies of Painlevé
equations. This interest is due to the connection between these hierarchies of
Painlevé equations and completely integrable partial differential equations. A Painlevé
hierarchy is an infinite sequence of nonlinear ordinary differential equations whose
first member is a Painlevé equation. A first Painlevé hierarchy was given by Kudryashov
through the reduction of the Korteweg-de Vries hierarchy [6], and Airault was the
first to derive a second Painlevé hierarchy which obtained by similarity reduction of
the modified Korteweg-de Vries hierarchy [7]. After that, Gordoa, Joshi and Picker-
ing [8] have used non-isospectral scattering problems to derive new second Painlevé
hierarchy and new fourth Painlevé hierarchy [2] , [9].

The Hamiltonian structure of the classical six Painlevé equations was discovered
by Okamoto [10], Jimbo and Miwa [11]. Okamoto use the Hamiltonian structure of
the second Painlevé equations to characterize the action of the Bécklund transfor-
mations found by Gromak [12] and Lukashevich [13] in terms of affine Weyl groups
and to produce immediately the so called Riccati-type classical solutions of the sec-
ond Painelvé equation [12], [14]. Also several properties of the Yablonskii-Vorobév
polynomials describing the rational solutions were proved using the Hamiltonian for-
mulation [15] . Umemura and Watanabe used the Hamiltonian structure in to prove
the irreducibility of Pj; [16]. The Hamiltonians for P; — Py are rederived within the
framework of the Adler-Kostant-Symes theorem and the classical R-matrix approach
on a rational coadjoint orbit in the dual Lg* of a loop algebra Lg [17].

In this thesis, our focus will be on the Hamiltonian structure of the first and

second Painlevé hierarchies. This thesis is organized as follows:



In chapter two we give the basic definition and theorem related to our study.

In chapter three we derive the Korteweg-de Vries hierarchy from the Kadomtsev-
Petviashvili hierarchy. Then we derive the first Painlevé hierarchy from the Korteweg-
de Vries hierarchy.

In chapter four we derive the second Painlevé hierarchy from the Modified
Korteweg-de Vries hierarchy.

In chapter five we derive the Hamiltonian structure for first Painlevé hierarchy.

In chapter six we derive the Hamiltonian structure for the second Painlevé hier-

archy.



Chapter 2
Preliminaries

Our aim in this chapter is to review the basic definitions and theorems related to

our study.
Definition 2.1. [18]

(1) Let F(X,U) be asmooth function (infinitely differentiable) of X = (xy, ..., x,),
U = (uy,...,uy). The total derivative of F' is the unique smooth function dF'
given by

dF = dy F + ...+ d, F,
where d,, F' is the z; total derivative of F' defined by

_8F+8_F8u1+ +8_Fc9uq

dy, F

(2) The derivations with respect to x is denoted by 9, and 9, denotes the inverse
of 0, ; that is
9,10, =1=10,0;".

Definition 2.2. [18] A pseudo-differential operator is a formal infinite series

D = Z Pi[u]y,

1=—00

whose coefficients P; are differential functions. We say that D has order n provided

its leading coefficient P,[u] is not identically zero.



Definition 2.3. [19] Let D be pseudo-differential operator. The projection (D)
of D is the part of positive powers of d,. Similarly, we use the notation (D). for

the projection of D to the part of negative powers of 0,.

Definition 2.4. [20] An m-dimensional smooth manifold is a set M, together with
a countable collection of subsets U, C M, called coordinate charts, and one-to-one
functions x, : U, — V,, onto connected open subsets V, C R"™ which satisfy the

following properties:
1. The coordinate charts cover M: U U, = M.
2. On the overlap of any pair of coordinate charts U, N Ug the composite map
X5 °Xa' : Xa(Ua NUs) — x3(Us NUp) is a smooth function.

3. If v € Uy, © € U are distinct points of M, then there exist open subsets
W C U, W C U, with yo(x) € W, x5(Z) € W, satisfying

Xa (W) N x5' (W) = ¢.

Example 2.5. [18] The simplest m-dimensional smooth manifold is just the Eu-
clidean space R™ itself. There is a single coordinate chart U = R™, with local
coordinate map given by the identity: y = [ : R™ — R™. More generally, any open
subset U C R™ is an m-dimensional manifold with a single coordinate chart given

by U itself, with local coordinate map the identity again .

Definition 2.6. [21] A Lie group is a group G which is at the same time a differen-
tiable manifold, and such that the group operation (g, h) — gh~! is differentiable.

Definition 2.7. [22] A Lie algebra g is a vector space with a bilinear map
[J:gxg—g
which is skew-symmetric
(X,)Y]=-]YV,X], VX, Yeg
and satisfies Jacobi identity

(X, Y, Z)|+ [Z,[ X, Y]]+ [Y,[Z,X]] =0, VX,Y,Z€g.



Definition 2.8. [23] A symplectic structure w on a smooth manifold M is given by
a bilinear form w : M x M — R which satisfy the following properties

1. Skew-symmetric: w(u,v) = —w(v,u) for all u,v € M.
2. Totally isotropic: w(v,v) =0 for all v € M.
3. Nondegenerate: if w(u,v) =0 for all v € M then u = 0.

Definition 2.9. [23] A symplectic manifold is a pair (M,w) consisting of a smooth

manifold M of even dimension, dimM = 2n, and a symplectic structure w.

Example 2.10. [19] Consider the smooth manifold R?". For any coordinate
(P1y oo Prs Q1y -5 @) € R?™ we defined the symplectic structure w by

w = Z dp; A dg;, which is called the standard symplectic structure on R?", where
i=1

(dpr A dgi) (61, ¢o) = | PG dale)

dpi(C2)  dai(G2)
Definition 2.11. [24] , [20] Let M be a smooth manifold.

, for all (1,¢ € R?™,

1. The set of all tangent vector at * € M is a vector space called the tangent
space to M at z, and it is denoted by T, M.

2. The dual space to tangent space T, M, the vector space of all linear functions
f:T.M — R is called the cotangent space at =, and it is denoted by T M.

3. The collection (union) of all tangent spaces at all points of M is called the
tangent bundle of M and it denoted by T'M; that is

TM = U T, M.

zeM

4. The collection (union) of all cotangent spaces at all points of M is called the
cotangent bundle of M and it denoted by T%M; that is

"M = | ] T;M.

xeM

Definition 2.12. [25] Assume M is an n-dimensional manifold. A vector field on

M is a function v that associates with every point = € M a vector v(z) € T, M.

7



Definition 2.13. [25] Suppose that (M, w) is a symplectic manifold. Then there is
a bundle isomorphism w : TTM — T* M, between the tangent bundle T'M and the
cotangent bundle T* M, with the inverse Q : T*M — TM, Q= w™!

Definition 2.14. [23] Let H € C*°(M), the vector space of smooth functions from
M to R, the Hamiltonian vector field of H is the smooth vector field X5 defined by
dH(Y) =w(Xy,Y).

Definition 2.15. [25]

1. An open cover of a given subset of a topological space X is a collection of open

sets of X whose union contains a given subset.
2. A topological space X is compact if every open cover of X has a finite subcover.
3. A compact manifold is a manifold that is compact as a topological space.

Definition 2.16. [23] For any finite dimensional compact smooth manifold M,
let Map(M;G) denote the group of smooth maps M — G, where G is a finite
dimensional Lie group. Then Map(M;G) is an infinite dimensional Lie group. If
M = S' then Map(S'; Q) is called the loop group of G and denoted by LG. The Lie
algebra of Map(M;G) is clearly Map(X;g). If M = S then Map(S';g) is called
the loop algebra and denoted by Lg .

Definition 2.17. [19] Let G be a lie group and M be a manifold . We say that G

is an action group on M if there exists a map

oG XM — M,
(9,p) > gep
such that
1. eep=p for all p € M, where e is the identity of G.
2. gy e (g1 ®p) = (g291)ep for all go, g1 € G and p € M.

Definition 2.18. [19] Let G be a Lie group that act on a manifold M. The orbit
of a point x € M is ¢, = {gex|g € M}.



Definition 2.19. [21] Let G be a connected Lie group with Lie algebra g. The
group G acts on g by the adjoint action denoted by Ad:

(Adg)(X) =gXg™', geG, X eg.

Similarly, the coadjoint action of G on the dual g* of the Lie algebra g is Ad* defined
by:
(Ad"g E)(X) =E(Adg™ (X)), g€G, Xe€g Ecg”.

Definition 2.20. [27] Let g* be the dual space of lie algebra g and = € g*. The
coadjoint orbits of = is given by ¢= := {ad\Z|X € g}.

Theorem 2.21. (Kirillov-Kostant-Souriau) [18] Let g* be the dual space of Lie
algebra g. Suppose that = € g* and p= is the coadjoint orbit of =. Then p= carries

a symplectic structure .

Theorem 2.22. [18] The orbits of the co-adjoint representation of G are even-

dimensional submanifolds of g* .

Definition 2.23. [25] The Poisson bracket of two functions f, g of the variables
(P1: D2, Pny 41, G2, -+ @) I8 glven by

B - df Og af dg
{f,g}—;api 0q; 0q; api.

Definition 2.24. [18] A Poisson bracket on a smooth manifold M is an operation
that assigns a smooth real-valued function {F, H} on M to each pair F, H of smooth,

real-valued functions, with the basic properties:

{¢cF+c¢'PH}=c{F,H}+c'{P H},
{F,c H+c¢'P} =c{F,H} +c'{F, P},

for constants ¢,c’ € R,

(a) Bilinearity:

(b) Skew-Symmetry: {F,H}=-{H,F},
(c) Jacobi Identity: {{F,H}, P} +{{P,F},H}+ {{H,P},F} =0,

(d) Leibniz’ Rule: {F,H-P}={F,H}-P+ H-{F,P} .



Chapter 3
First Painlevé hierarchy

In this chapter, we will derive Korteweg-de Vries hierarchy from the Kadomtsev-
Petviashvili hierarchy and then we derive a first Painlevé hierarchy from Korteweg-

de Vries hierarchy [19].

3.1 Korteweg-de Vries hierarchy from Kadomtsev-

Petviashvili hierarchy

Consider the Lax operator of the Kadomtsev-Petviashvili (KP) hierarchy

L =0, +u0; ' +uz0, >+ . (3.1)
The operator L obeys the Lax equation of the KP hierarchy

oL =By, L],  B,=(L").,, (3.2)

where 0, = 9/0t,, n € N, and the commutator B,,, L denote byC [B,,, L] = B,L —
LB,. In equation (3.2), when n = 1, we take t; = z [26].

Definition 3.1. Let ¢ and p be a pair of coprime positive integers. The string

equation of type (¢, p) takes the commutator form

@, P]=1 (3.3)

for a pair of ordinary differential operators

Q=0"+ g0+ ... + g, P=0F+ P24 .+ f)

10



We can derive the Korteweg-de Vries (KdV) hierarchy from the KP hierarchy (3.2)
under the condition
(1), =0. (3.4

Let
Q= L% (3.5)

Using equation (3.1), we obtain

L2(f) = L(Lf)
= (Op + w20,  +uz0,% + g0 ) (fo + w20, L f +uzd 2 f + ...0)
= for + O0u07 f Fuof + 0p(us0;2f +ugd73f 4 ..)
+ uaf + w0, Hugd N f 4+ uz0, 2 f + ..)
+ w302 (fo + w20 f +uz0 2 f +...)
+ w02 (fo +u20 f +uz0,2f + ...

Using the constraint (3.4), we obtain

Q) = (L*(f)) sy = fax + 2uaf.

Thus we have
Q = 9% + u, where u = 2us. (3.6)

Proposition 3.2. All even flows are trivial in the sense that
OonL = [L*, L] = 0.
Proof. By equation(3.2), we have
Ol = [Bon, L], Ban = (L*),, = ((L*)").,.

Substituting L** = (L*")_, 4 (L*"),, into [L*", L] and using the linearity of [, |, we
have
[L2n7 L] - [(L2n><07 L] + [(L2n)207 L] (37)

By equation (3.7), we have

OanL = [(L*"),, L] = [L*", L] = [(L*") ,, L.

<0’

Now the constraint (3.4), (L?)_, = 0, implies
(L) o = (L))o = ((L7) )" =0,

11



and hence

[(L*)_,, L] = 0.

<07

Since L? and L are commute, then we obtain
Oon L = [L*", L] = (L*")L — L(L*) = 0.
]

We will show that the Lax equation for the KP hierarchy (3.2) under the condi-
tion of equation (3.4) reduces to the Lax equations of the KdV hierarchy

O2n1Q = [BQn+17 Q]7 Baony1 = (L2n+1)20 = (Qn+%)20' (3-8)

Let -
$=1+> wd', 0.¢=—(00"¢"") 6, L=¢d¢ . (3.9)

i=1

Using (3.9), we obtain

D1 L’ = Ooni1[00¢ ' ¢
Dony1(00%¢~]
(02n110)0¢ ™" + ¢09n11(0%97)
= (Oon110)0%¢7" + 0 (Dons197")

Since dyp,4q and 0% commute, we obtain
Ooni1L? = (Oons10)P¢™" + ¢ 0anr19™".
Equation (3.9) and g, 1107 = ¢~ (¢0* T ¢~1)_, implies
Oal? = —(60"1671)_00%67" + 60P67 (907107 .,

Since L? = ¢0?¢~!, L*T! = ¢90?" 1 p~! we have

a271-1—11/2 = _([/2n+1)<0[’2 + Lz(L2n+1)<0
=~ L7
Since L** = (L*"*1) 4 (L***1)_, and [, ] is linear, we have
82n+1L2 — —[L2n+1,L2] + [(L2n+1)207L2]‘

12



Since L*! and L? commute, we obtain

Qonn L? = [(L*F1),,, L7
= [(Q™*2).,, Q)]

= [B2n+1> Q]7 Bony1 = (Qm_%)zw

or
Oon1Q = [Bant1, Q).
Define:
2Rn+1,x = [BQn—‘rh Q]7 (310)
where R, , is the derivative of R,, with respect to x.
Note that
U 1 3 1 3 ) 5 .
Ry=1, Ri =<, Ry = Sy, _ZR:_mcxz_mc —ul 4+ —uP,
0 y HlL =5, A 8u +8u, 3 32u +16uu +32ux—|—16u,
(3.11)

If we choose P to be a linear combination of By, i as
P = ng+1 -+ CIBngl + ...+ CgBl (312)

with constant coefficients ci, ¢z, ..., ¢, in equation (3.3), we have

[Q,P] = _[P7 Q] = _[BZQ+1 + ClBngl + ... _'_CgBlaQ]'
By linearity of [, ], we have
[QaP] = _[B29+1’ Q] - 61[329—17Q] e CQ[B17Q]'

From equation (3.10), we obtain
Q,P] = —2Rg1,—2c1Ry, — ... — 2Ry ;.
Using equation (3.3), we have
2Ryi12+ 201 Ryp + ... + ¢42R , +1 = 0. (3.13)
Integrating equation (3.13) with respect to x, we obtain
2Ryi1 4+ 21 Ry + ... +2¢,Ry + 2 = 0. (3.14)

Equation (3.14) is the first Painlevé hierarchy.

13



By equation (3.10), equation (3.8) and equation (3.6), we have

2Ront12 = [Bont1, Q)
== a2n+1c2
= (92n+1 (8:% + U)

= 09,4102 + Dopy1.

Since 82n+18§ = 0,
Oon1t = 2Ron 11 2, (3.15)

which is the evolution equation for w.

14



3.2 Orlov-Schulman operator

In this section, we will define the Orlov-Schulman operator and the dressing opera-

tor and we will derive the relation between them .

The Orlov-Schulman operator is an infinite-order pseudo-differential operator of the

form

M=) nt,L" "+ a4+ v, L7 (3.16)
n=2 n=1

where L was given in (3.1) and v, is constant.

The Orlov-Schulman operator M [19] obeys the Lax equations
O, M =B, M|, (3.17)
and the commutation relation [19]
[L,M]=1. (3.18)

The existence of this operator can be shown by the language of the auxiliary linear

system
Lp = z¢,  Ontp = Bu, (3.19)
of the KP hierarchy. The solution of the linear system (3.19) has the form [19]
= Wexp(zz + Z tn2"), (3.20)
n=2
where .
W=1+Y wpz?, (3.21)
j=1

is a pseudo-differential operator and it is called the dressing operator. The operator

W satisfies the following two equations

W = —(WRW ™) W, (3.22)
and
L = W@xwfl, Bn = (W@;Wﬁl)zo. (323)
We can define M as .
M =W nt,dy " +x)W, (3.24)
n=2

15



which satisfies the foregoing equations (3.17), (3.18) and the auxiliary linear equation

My = 0,9 (3.25)

16



3.3 First Painlevé hierarchy

In this section, we will derive first Painlevé (PI) hierarchy from the KP hierarchy [19].

The string equation (3.3) is derived from the KP hierarchy under the constraints

(Q)<o =0, (P)<0 =0, (3'26)

on the operators
Q=1L% P:—ML ! Zm L”2+Zan" 2 (3.27)

The equations (3.26) and (3.27) lead to the following consequences:

1. As it follows from the commutation relation (3.18), the operators P and @),

obey the commutation relation [@, P] = 1.

2. Under the first constraint (3.26), ) becomes the Lax operator 92 + u of the
KdV hierarchy.

Note that in the following equations, we assume that to =t, = ... = 0.

3. The constraint (3.26) and (3.27), imply that P is a differential operator of the

form

1 B = on+1
P = é(ML 1)20 = Z 2 t2n+1BQn+1' (328)

n=1
By equation (3.1), we have
L7 = @07 + 4207 +¢507° + -

It follows that
(L1, =0, n=0,1,2,3,-

By equation (3.27), we have
(IMLY,, = Znt L2, qunL n=2)
= (Z ntnL”_Q)ZO
n=1

17



Setting ty = t4 = ... = tg, = ... = 0, and using B,, = (L"), from constraint (3.28),

we have -
(ML), = Z Nlan+1Bap-1.
n=1
If we set
t = 2 t =1 =..=0
2g+3 — 29 + 17 2g+5 — L2947 — - — Yy

then the differential operator of equation (3.28) can be rewritten as

P = Byyi1 + c1Bog_1 + caByg_3+ ... + ¢4By,

2n +1
where ¢, = ¢, (t) = 5 tons1, n=1,....4g.

From the above definition of ¢, = ¢,(t), we can compute the first Painlevé hierarchy

At g =1, we have ¢; = ¢1(t) = 3ts.
Substituting ¢;(t) into equation (3.14), we have

2R2 + 261R1 +x=0.

Substituting Ry, Ry from equation (3.10) and setting t3 = 2 into the above equation,
we have

Mt + 202 4 302 =0
~Ugpr + =U u—+x =0,
4 4

which is the first Painlevé equation.

Similarly when g = 2, we have

3

5)
Cl(t) = §t3,C2(t) = §t5

Substituting ¢;(t) and cz(t) into equation (3.14), we have
2R3 + 2C1R2 + 2C2R1 +x=0.
Substituting R3, R, R; from equation (3.10) and setting t3 = 2 into the above

equation, we get

1 3 ) 5 3t 9t

which is the second number of the first Painlevé hierarchy.

18



4. By equations (3.19) , (3.25) and (3.27), we obtain

1
QU = 22, PV = 52—152\11, (3.29)

Substituting A = 2% into equation (3.29), we have
QU = \U, PV =0d,0. (3.30)

From the KP hierarchy, the string equation (3.3) of type (2,2g+1) along with

g extra commuting flows

aQn—l—lQ - [BQn—I—la Q]a 82'rL—i-1-P = [B2n+lap]7 n = 17 e G- (331)

The system (3.31) is the PI hierarchy.
By differentiating P with respect to ta,41 in equation (3.27), we have

aQn—&—lp = a271—5—1(%]\414_1)
= YOons M)L™" + LM (Or L),

Using equation (3.17) and g, 1 L™ = L7 0s, 1 L) L™ we get
82n+1p - %([an+1’ M])L_l - %ML_l(agnHL)L_l.
Now equation (3.2), implies that

O P = %([BQn—i-la ML~ — %ML_l[B%H, LIL™)
%B2n+1ML71 - %MBQn—s—lLil — PBopy1 + %MBQn—s—lLil
= BQn—i-lP - PB2n+1 = [BQn—i—la P]

19



3.4 Matrix Lax formalism of commuting flows

We will rewrite the PI hierarchy as a 2 x 2 matrix Lax equation [19].

The second part of equation (3.19) can be rewritten as

Oon 1V = U, (N, (3.32)
where
Un(N) = ( An() - Ba(A) ) , (3.33)
Fn(A) =4,(A)
v [ ) |
'lva

BnO‘) - RnO‘)a
Ap(N) = _TIRn()\)w, (3.34)
Ro(A) = A"+ X" o + A" 2py + . 4 pp, n=0,1,2,--- (3.35)

where p; = R;, = R; define in equation (3.11). By differentiate W with respect to

(G
a2n+ 1 v o= 82n+1 ( )
Yz

_ 82n+1 w
a2n+1 wm

Since 0, and 0,1 commute, we obtain

Oan,
byt Y
amaZnJrlw

toni1, we obtain

By equation (3.19), we obtain

BZn+1w
N 3.36
o ( arBQn—Hd} ( )
Defined [19]
1
Bunirth = Ru(W)t — SRu(\et (337
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Differentiating equation (3.37) with respect to x, we have

1 1 (3.38)
Substituting (A — )Y = .., [19] into equation (3.38), we get

= 3RuNate + [Ra(N) (A = ) = R (N)a]¥o
Substituting 0, (Ba,+1%) and B, 111 from equations (3.39) and (3.37) into equation
(3.36), we get

Ot = ( e )
IRy (N)aths + (Ra(N) (N — 1) = $Ra(N)aa )t

From equation (3.34), we obtain

Do U — ( B,(A\)ty + An(N) )
— A, (A\)by + Tn(AN)Y,

_ (Anm B,(\) ) < v )
Fn<)‘> _Ano‘) Q/Jx

In the special case of the equation (3.32) at n =0 (¢, = ), we obtain

alqj:az\p:“ow By(M) ) < v )

Bo(A) = Ro(A) =1,

Ao(X) 5 Ro(N): =0,
To(\) = FRoNae + A —uw)Ro(\) =X —u
This implies that
0 1
835\11:()\_“ O>\IJ. (3.40)
Define:
a(A) BN
V(A = : 3.4
W ( ) —a(y) ) Al



YA = a(N)z+ A —u)B() =
BA) = Ry(A) +ca(t)Rg—1(N) +
a(A) = —3 (M-

2

FB(N)az + (A —u)B(N),
ca(t)Ry—a(A) + ... + ¢, (t)Ro(N), (3.42)

The second equation (3.30) can be thus converted to the matrix form
OV =V(\)UT. (3.43)
Then we can rewrite V() as linear combination of U, () as
V(A) = Ug(N) + c1(t)Ug—1(A) + c2(t)Ug—2(X) + ... + ¢4(t)Up(N). (3.44)

Substituting S(A), a(A),y(A) from equation (3.42) into equation (3.41), we have
VQ):<am m»>:< ~3B(\. B )
1A —a(d) 5 BNaw + (A =u)B(A) 38(N)a)

The definition of 5(\) in equation (3.42), implies that

LRy (N = 31 (DR (Vo — oo = 3eg(DRo (Vs Ry(A) + oo (6} Ro(N)
YT R e B RN — o — (DR
+(A —uw)(Ry(A\) + c1(t)Ry—1 + ... + ¢4(t)Ro(N)) %RQ(A)I 4+ .+ %cg(t)Ro()\)x
_ _%RgO‘)m R (A)
ARy Waw + (A= w)Ry(N) SR, (V).
+ ( LR, 1V, 1) Ry () )
31t Ry 1(N)aw + (A —w)cr(t) Ry-1(N) - 5¢1(t) Ry1(N)

+.“+< QL (1) Ro() )
—5¢g() Ro(Naw + (A = w)cg () Ro(N)  5¢4(t) Ro(N)a

= U\ + as(OUpa(N) + (U2 + .+ ¢ (Us(N).
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Equations (3.32) and ( 3.43) gives

O 1OV = D1 (VINT) = (Dnia VO + V(N

Equation (3.32) and ( 3.43) gives
OO 11V = O\ (U, (N\)¥ + U, (AW = U, (M)W + U, (A\)V(N)T.
Using 0x0ay 11V = 0o 1100V, equations (3.45) and (3.46), we obtain
U (A) + Uy(NV(A) = VAU = (91 V(N))W.
It follows that
o1 VN) = [U.(N),VIN]+UL(N), n=0,1,2,...,9,

where Ul (X) = O\Un(A).
Equation (3.47) is the PI hierarchy.

If we take the special case n =0, (¢; = z), then we find

0.V (V) = [UoN), VN + TN, UA(A) = ( (1) 8 ) .
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Chapter 4
Second Painlevé Hierarchy

In this chapter, we will derive the Modified Korteweg-de Vries hierarchy from the
Korteweg-de Vries hierarchy. Then we will derive the second Painlevé Hierarchy

from the Modified Korteweg-de Vries hierarchy [9].

4.1 Korteweg-de Vries hierarchy

In this section, we will use the Lenard recursion relation to defined the Korteweg-
de Vries hierarchy. Then we will give the explicit form of the first and the second

members of this hierarchy.

The KdV hierarchy is given by [9]
Uty + 0l {U} =0, n>0 (4.1)
where /,, satisfies the Lenard recursion relation
Opln1{U} = (Orae +4U 0, + 2U, )0, {U}. (4.2)
Now substituting £o{U} = 1 into equation (4.2) with n = 0, we find
0:01{U} = (Oppe +4U 0, + 2U, ) 0{U} = Us,.
Thus integration with respect to z yields
L{U} =U. (4.3)
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Substituting ¢;{U} from equation (4.3) into equation (4.1), we obtain the equation
U, +U, =0. (4.4)
When n = 1, the Lenard recursion relation (4.2) gives

Dl {UY = (Dpue + AU, + 2U,) (0, {UY)
(Ouze + AU D, + 2U,)(U)
= Uppa + 6UT,.

Integration of both sides with respect to x gives
(o{U} = Uy, + 3U2, (4.5)

Substituting ¢,{U} from equation (4.5) into equation (4.1), we have the KdV equa-
tion

Uy, + 6UU, + Upyr = 0. (4.6)

When n = 2, the Lenard recursion relation (4.2) reads

0l3{U} = (Opze +4UD, + 2U,)lx{U}
(Opee + 4UD, + 2U,) (U, + 3U?)
= Us, + 10UU,,, + 20U,U,, + 30U2U,

where Us, is the fifth order derivative of U with respect to z. As a result, we get
(3{U} = Uy, + 10U + 5UZ + 10U U,,. (4.7)

Substituting ¢3{U} from equation (4.7) into equation (4.1), then the KdV hierarchy
gives

Us, + Usy + 10UU 4y + 20U, U, + 30UU, = 0, (4.8)
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4.2 Modified Korteweg-de Vries hierarchy

In this section, we will derive the Modified Korteweg-de Vries hierarchy from KdV
hierarchy.

Under the map U(z,t) = W,(z,t) — W?(z,t), the KAV equation (4.6) becomes
O (W —W?2) +6(W, — W)W, — W+ (Wy — W?)pe = 0. (4.9)
Equation (4.9) can be written explicitly as

W — 2WW,+ 6W, Wy, — 6W2W,, — 12WW2 + 12W3W,, + Worae

(4.10)
— W, W,y — 2WW,,, = 0.
We note that equation (4.10) is equivalent to the equation
(0 — 2W)W; — 6(0, — 2W)W?W, + (0 — 2W)Wopy) = 0,
or
(0 — 2W) (W — 6W?W, + Wips) = 0. (4.11)

Therefore, if W (z,t) satisfies the modified Korteweg-de Vries (MKdV) equation
W, — 6W2W, + Wape = 0, (4.12)

then U = W, — W? satisfies the KAV equation (4.6).
Now we will generalize this result to the KdV hierarchy.
Substituting U = W, — W? into equation (4.1), we have

Ot i1 [We = W3 + 0l 1 {W, — W2} = 0. (4.13)

Using equation (4.2), we can compute 9,0, +1{W, — W?} as follows:

Oplpi 1 Wy — W2} = (Opaa + 4(Wy — WO, + 2(W, — W2),) (bp{W, — W?})
= 0p(0peln{Wy — W2}) + AW, 0., AW, — W2} — AW?20,L,,{W, — W?}
+ 2Woul AW, — W2} — AW W, L, {W, — W?2}.
It follows that

Oyl 1 AWy — W2} = (8y— 20 ) (O by AW — WY+ 20 8, by { Wy — W2+ 20, { W, — W2},
(4.14)
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Substituting 9,4, 1{W, — W?} from equation (4.14) into equation (4.13), we have
Oty ir Wa=W?) (0, =2W ) (Bau ln A W = W2} +2W 0, { W = W2} 42W, £, { W, —W?}) = 0,

or

0,01, W — 2W8yy W + (8 — 2W) (Dualu{ Wy — W2 + 2W 0,0, {W, — W2}
WLl W, — W2}) = 0.

(4.15)
We note
Otopis Wy = W?) = 0,04, ., W — 2W Oy, . W = (0, — 2W) Dy, ., W.
Thus equation (4.15) can be written as
(Op = 2W)(0tg, (W + Opaly, + 2W 0l + 2W,0,,) = 0. (4.16)
Equation (4.16) implies that
Dt a W + 05(0; + 2W) L, (W, — W?) = 0, (4.17)

which is the MKdV hierarchy.
At n=1, we obtain equitation (4.12).
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4.3 Second Painlevé hierarchy

In this section, we will derive the second Painlevé hierarchy from the MKdV hier-

archy.

Let ¢,, be given by equation (4.2) and let ¢, be given by
Ol 1 {Ve = V) = [0... + (4V, — V)0, +20.(V. — VIV, — V). (4.18)

Substituting
Vi(z T
W(xat?)) = L{? z = 1
(3t3)3 (3t3)3

into the MKdV equation (4.12) with ¢ = 3, we have

Ve V() VR V)

4.19
(Bs)F B ()t (Bt o
Multiplying equation (4.19) by (3t3)3 and substituting z = (3x)1 into equation
t3)3
(4.19), we obtain
VN(2) = 6V2(2)V\(2) — 2V\(2) — V(2) = 0. (4.20)

Integrating equation (4.20) with respect to z, we get the second Painlevé equation

(Prr)
VNz2) = 2V3(2) + 2V (2) + oy, (4.21)

where «; is a constant.
Now we use the substitutions
V(z) x
(@n+ Dig)7n ’ (422

W([L’, t2n+1) = i
((271 + 1)15271_:,_1)T+1

to compute the second Painlevé hierarchy. Using equation (4.22), we can compute

W, — W? and obtain

V' —V2(2)

W, —W? = —
((271 + 1)t2n+1)m

(4.23)
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Moreover

—zV'(z) 1%
W . <2n + 1)t2n+1 ((2?7, + 1)t2n+1)272l%
ton+1 _2
o ((2n ‘l‘ 1)t2n+1) 2"2‘"1 (424)
—V(2) V(2)z

((2n+ 1)752n+1)527ﬁ ((2n + 1)t2n+1)% '

Lemma 4.1.

1 .
0[U] = OV = V. .
)= o bV -V (4.25)

Proof. We will prove this lemma by induction.

If k =1, equation (4.2) and equation (4.23) imply
VV(z) — V3(2)
(20 + Dtan) 50

Uy =U=W, -W?=

By the definition of ¢}, we have
GV =V2(2))
((2n + V)toner) 57
Thus the relation (4.25) is true for k£ = 1.
Assume that equation (4.25) is true for k = m; that is
1 ~

U] = YT GV — v, (4.26)

fl{U} =

We want to prove that equation (4.25) is true for k = m + 1.
Equation (4.22) implies
dz 1

(%Emﬂ[U] - 8Z€m+1[U]% - ((2n n 1)t2n+1) 2n1+1 (9Z€m+1[U] (427)

Moreover, we have

dz\’ d
O+ AU, +2U, = 03 () +4(W, — W2, + 2, — W2),.
dx dx
Thus, using equation (4.23) and equation (4.22), the above equation becomes

1 3 \(2) — V2(x V) V(s
((2n + 1)tops)ZoF (02 + 4V (2) = VE(2)]0: + 2[V'(2) = VZ(2)]:) -

02 +4U0, + 2U, =
(4.28)
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From equations (4.27) , (4.28) and (4.2), we have

Ol {UY = (204 Dtoni1) 7 (Dpae + AU, + 2U, ) {U

1
= o° \(2) — V3(2)]0, ‘(2) = V(). ), ‘
(@t Dy O T V(R = VIR0 + 2V = VAL D)

Substituting ¢,,{U} from equation (4.26) into the above equation, we get

1 3 \Z o 2 > \Z _ 2 z
ol {U} = ((2n+1>t21n+1)%2+1{3z +4[V'(2) = VZ(2)]0: +2[V'(2) = V7(2)]:}
x [V = V7]}
((2n + 1ft2n+1)2"+1
= 2m+2 azg;n[v\ - V2]'
((2n + 1)tgnyq) 2051

]

Remark 4.2. We obtain the Pj; hierarchy by substituting W (z), z and 0, ,, W from
equation (4.22) ,(4.23) and (4.24) respectively into equation (4.17). More precisely,
equation (4.17) gives

—V(2) B V\z)z
(2 Dtage) ¥ (204 Do) W55 (4.20)
+ 2 (az(az + 2V>( 2n EAn[V\ - VZ]) = 0.
((2n 4+ 1)topi1) 2 ((2n + Dtgny1) 2T

2(n+1)

Multiplying equation (4.29) by ((2n 4 1)tg,11) 21 , we get
0.(0, + 2V, [V =V =V — 2V = 0. (4.30)
By integrating equation (4.30) with respect to z, we find the Pj; hierarchy
(0. +2V)0, V' =V =2V 4+,  n>1, (4.31)
where «,, is a constant.
Example 4.3. When n = 1, equation (4.31) becomes
(8. + 2V)L[V' = V2] = 2V + . (4.32)
Substituting ¢,[V' — V2] = V' — V2 into equation (4.31), we have
VN2) = 2V3(2) + 2V (2) + au,
which is the first member of the second Painlevé hierarchy.
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Example 4.4. When n = 2, equation (4.31) becomes

(8, + 2V) [V — V] = 2V + as. (4.33)
Substituting £,[V' — V2 = (V' = V?).. + 3(V' — V?)? into equation (4.33), we have

(0, +2V)[(V' = V2),, + 3(V' = V)?] = 2V + ay.
This implies
(0. +2V) [V = 2(VY)2 =2V V" + 3(VY)? = 6V'V2 + 3V = 2V + ao.
As a result, we find
VW = 10V2V" — 10V(VY)? 4+ 6V = 2V + as,

which is the second member of the second Painlevé hierarchy.
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Chapter 5

The Hamiltonian structure for

first Painlevé hierarchy

In this chapter, we will use the the Mumford system and the Spectral Darboux

coordinates to derive the Hamiltonian structure of first Painlevé hierarchy [19].

5.1 Equation of spectral curve

In this section, we will study some lemmas concerning the KdV hierarchy.

Let V(\) be a matrix define by

V) = ( a(h) BN ) | o)
1) —a())
where a(\), B(\) and () are polynomial of the form
a(N) = oMM+ aNTi 4 L+ ay,
BA) = NM4BN T+ .+ By,
7(A) AT A+ 4 Y4

We define the spectral curve of the matrix V' (\) by the characteristic equation
det(ul — V(N)) = p* + detV(X) = 0. (5.2)
We can write equation (5.2) more explicitly in the from
p*=h(d) = a(A)* + BA)Y(N). (5:3)
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This implies that h(\) is polynomial of A with degree 2¢g + 1.

We can translate the KdV hierarchy to the isospectral Lax equations
Oont1V(A) = [Un(N), V(N)]. (5.4)
Equation (5.4) is called the Mumford system.

Lemma 5.1. There is a 2 X 2 matriz

() = 1+0\1YH) oW
L w+00Y) 1400

of Laurent series of \ that satisfies the equations

O 1P(N) = Up(N)P(N) = P(M)A"A, n=1,2,3, .., (5.5)
0 1
where A = < Y0 ); and ONH) = A+ A2+ oA 2+ -+

Proof. Let ¥(z) be the special solution of the auxiliary linear equations (3.19). We
can rewrite equations (3.20) as ¢ = W (z) exp(£(2)), where W (z) is defined by (3.21),

and {(z) = Zt2n+122n+1.
n=0

The associated vector-valued function

(N WE ) e
w<>—< Mm) <ZW(Z)+W(2)Z) p(E(2)) (56)

satisfies the auxiliary linear equations (3.32) with A = 2% and U,, defined by equation
(3.33) for all n = 0,1,2,--- . Since A remains invariant as z — —z and ¥(—2z)
is a solution of these linear equations, < U(z) V(—2) > is also a solution of the
auxiliary linear equations (3.32).

By equation (3.32) and (3.33), we have
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Oant1 ( U(z) U(—2) )

<
—
N
~—
8
<
—~
|
N
~—
8

( ¥(z)  (—2) )
)

—1
L1 ) _ ( U(2)+W(—2)  W(z)—T(—2) )
p 2 2z ’

T = (( () w(-2) )
P
then T(\) is a solution of auxiliary linear equation (3.32).

Differentiating Y(\) with respect to ty,41, we have
( 0241V (2) + O2n 1 W (—2)  Ooni1¥(2) — 021 V(—2) >
2 2z
AN (W(2) =W (=2))+Bn (M) (¥(2) =¥ (=2)a) )

2z
P (W) (¥ (2)+Y(=2) = An (M) (¥(2) =V (=2))
2z

aZn-i—lT()\)

An()‘)w(z)'i‘Bn(’\)w(z)z'f‘An()‘)w(_z)""Bn()‘)w(_z)z

— 2
( L (MNY(2) = An (NP (2)24+Tn (MY (=2) = An (MNP (=2)x
2

(a0 B ¥(z) +2¢(—2) ¥(z) —2Z¢(—2)
Fn()\) —An()\) w(z)x + ¢(_2)x ¢(Z)$ - ¢<_Z)a:
2 2z
So it follows by equation (3.33), that
¥z) () P(=2)  _Y(=2)
O T(A) = Un(A)( NERRTEE >+U"(A)( Vs v )
2 2z 2 2z (57)
- o s s ) oy
Now we can compute
11 exp(¢(2)) 0 o)
0 exp(—((2)) z =z



by the definition of the matrix exponential. Thus

(1 1 )(exp(g(z)) 0 )(1 1 )1
z —z 0 exp(—((2)) z —z

0 ¢(»)
= eXP(zC(z) 0 )

Using the definition of ((z) and A\ = 22, we have

(1 1)<exp<g<z>> 0 )(1 1)1
z —z 0 exp(—((2)) z —z

~ exp 0 oo o tang1 2"
Sty 220D 0

o 0o A\
e ()
2n+1
AZntl _ 0 1 _ 0 A"
A0 A+l )
we have

! exp(C(Z)) ’ bl : = ex N A2+l
( z =z ) ( 0 exp(—((2)) ) <z . > p ( nz%th—s—l ).

Define: .
o() = ( W (2) W(—2) ) ( 11 ) | 59)
W (z) —z2W(=2)4+W(=2), z —z

Then using equation (5.6), we obtain

Since
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Assume that

oy — ( W(z) W(—2) )<exp(<(z)) 0 ><1 1 )1
2W(z) —2W(=z2)+W(=2), 0 exp(—((2)) z —z

Using equation (5.8), we can rewrite T(\) as
T(A) = ®(\) exp Zt% JAZELY, (5.11)

Thus equation (5.11), implies that

On1®(A) = (Goar (W) exp (=D ot A ) £ T(Nhnsrexp (=Dt A,

n=0

By equation (5.7) and equation (5.11), we have
Oonp1®(N) = Un(A)P(N)exp ZthHAZnH exp ( thnHAQnH
n=0
+ (I)()\ exp Zt2n+1A2n+l eXp Zt2n+1A2n+1 A2n+1>.
n=0

Since A?"*! = \"A, we have

Opns1®(A) = U, (A)B(A) — (A)A"A.

[
Now will prove that
U\) = ®(A)AD(N) ! (5.12)
satisfies the lax equation
Oon1U = [U,(N),U(N)]. (5.13)
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Differentiating equation (5.12) with respect to to,41, we have
Oont1U(N) = Doy (P(NAR(N) )
= (Ont1®(A)AL(A) ! + @A) (D21 A)R(N) !
+ P(NA(D2p1®(N)7H).
Using equation (5.5), we have
Ooni1UN) = U,(N)PNADN) L = D(AN)AN"A2P(N) !
— DN)ADPN) U, (N)P(N) — @(N)ATA]D(N) L
Using equation (5.12), we obtain
Ooni1UN) = U,(NUN) — D(A)AN"A2P(N) !
— ON)ADPN) U, + P(N)AN'AD(N) !
= U,(MUN) = UNU,(N)

and hence we complete the proof.

_ A(N) B\ ,
Lemma 5.2. The matrix elements of are Laurent series of A of
(A =AM
the form
AN =0, B(\) =1+00\1), LX) =x+0(\), (5.14)
that satisfy the following conditions:
An(A) = (A"A(N))20,
Bn(A) = (A"B(A))o, (5.15)
Fn()\) = ()\nr()\))zo — Rn+1, n = 1, 2, 3, s
AN+ BAT(N) = A (5.16)
Proof. From equation (5.12), we have U()\) = ®(A\)AP(\)~!. Let
F(\ A
NN AORCEAY
HA) F(X)
where
FO) = 1T+l A2+
HN) = wi+h AP hod 2400, (5.17)
G(/\) = gl)\il + gg/\72 =+ e

37



Then

N 1 AFG—FH )G+ F?
- FPP—HG\ \F?-H®> -\FG+FH )

Define: A(\), B(\) and I'()\) as

NG - FH
—\G? +
A = N Teh

Then using equation (5.17), we obtain

2
B = 1+ (22T 1y 1400,

2fs — grun
AN = OOY) i wi= g1,
T(A) = A (0] —wig1) + (g1h1 +wig2 — 2wiho) A~ + ... = A+ O(N?).

Thus we can write U(X) as

U\) = ( AN B > (5.18)

We can rewrite (5.5) in the form

Un(A) = 09 1®(N).O(N) L+ (AN A"AD(N) !

(5.19)
= Bh ®(N).O(N) 7+ AU (N),

and hence we get

(D21 @A)V = U,(\) — A"U(N).
Using equations (3.33) and (5.18), we have

Ay(N) = AA(N)  Bp(\) — A"B(A) ) a0

(O 1 (V)N = (rn(A)—A"I‘(A) —Aa(N) + APA(N)
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By equation (5.17), we obtain
O\t O\t
(D21 PN))P(N) ! = (A7) B ( _1) : (5.21)
Oanprw; + O(A™Y) O(ATY)
By comparing (5.21) and (5.20) and using 0a,4 1w = —R,, 11, we obtain
B.,(A\) = A"B(A\) = O\, (5.22)
L.(A) = A"T(\) = OA™YH =R,

Therefore
A,(\) = O()\’l)—f—)\”A()\),

B,(\) = O\ 1)+ AB(), (5.23)
Fn()\) = 82n+1w1 + O()\_l) + A”F()\)

Since the smallest n in equation (3.33) and equation (3.34) is n = 0, we have
An(A) = [0 + A" AWN)]z0 = A" A(N)]20
By(A) = [0+ A"B(A)]z0 = [\"B(A)]0
Lo(A) = [OYH)+AT(N) — Rusa]so = [N'T(N)]s0 — Rug1, n=1,2,3---.
Since det(U())) = det(®(A)AP(N\)~1), we obtain
AN +BAT(A) = det(®(N)) det(A) det(D(N) 1) = det(P(N)) det(P(N) 1) det(A) = .
[

Remark 5.3. Since B, (\) is equal to the auxiliary polynomial of R, (\) defined in
equation (3.35), the second equation of (5.15) implies that B(\) is a generating
function of all p,’s:
BA) =14p A +p A4
Using equation (5.15), we get

B,(A) = A"+ X'y + X' 2wy + . A+ w, (5.24)

Substuating B,(\) = R,()\) in equation (5.24), we have
By(A\) = A"+ X" o + N g+ oy, py = Wy

Thus we obtain

BA) =1+ pA7 =14p A" +p A7+
§=0
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Remark 5.4. In equation (5.13) at n = 0, we have

AN = T(A) = (A=u)B(}),
0,B(\) = —2A(N), (5.25)
2,T(\) = 20\ —u)A\).

0 1

Since t; =z and Uy(\) =
' oY) ()\—u 0

) and by equation (5.13), we have

LUN) = [Ue(A), U]

From equation (5.18) and definition of commuttator, we have

0,40 .B0) | _ .
( I, Am) = GV = U)o

_ ( T(\) — (A —u)B(A) —2A(N) )
2N —uw)A(N)  (A—w)BOM) -T(\) |

Therefore, we have equation (5.25).
The first two equations in (5.25) can be solved in A(\), I'(\) as

AN = _713@)1, r(\) = ;B(A)m + (A —u)B\). (5.26)

As a result, the third equation of (5.25) can be rewritten as
1
§B(/\)m —2(A—u)B(A\), +uB(A) = 0. (5.27)

Remark 5.5. Assume that A(\) and I'(\) are defined in equations (5.14), (5.16) and
substituting I'(A) from equation (5.26), into equation (5.16), we obtain

LB+ B (S (BWar) + (A= w) BOV) = A

(2 2
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5.2 The structure of h(\)

In this section, we will study the structure of h(\) which produced by the spectral

curve of matrix V().

Let us recall equation (3.44), which reads

a(A) = Ag(N) +a(t)Ag ;
Bo(\), (5.28)

h(A) = (Z ci()Ag—i (V) + (Y Ci(t)Bg—i(A))(Z ci(t)lg—i(N))?

Hence, h(\) can be expressed as

hA) = Y em(t)en(t)(Agmn(N) Ag—m(N) + Byom(MNTy—n (X)), where co = 1. (5.29)

m,n=0
h(\) can be written as [19]

g g

hA) = Y en()ea®N AN+ BATA) =2 ) em(t) Rysr—m A+ O(A1).
e " (5.30)
Theorem 5.6. h(\) can be expressed as
h(XN) = X291 49261 ()M + (2co(t) + 1 (£))N972 4 ..
1 B (5.31)
+ Zcm ComONTEE () n(t)cgirm(t) + )N + 0N,

41



Proof. Substituting A(A\)? + B(A)T'()) from equation (5.16), and
2R,11 +2c1 Ry + ... + 2¢,Ry + x = 0 into equation (5.30), we have

g
hA) = D en®en(N " = 2(Rypy + 261 Ry + ... + 26, RN + O(A )
m,n=0
g
= ) en[NIT 4 NI X e AT 2+ O
m=0

AR CP S Y S ST Can

1A + AT 4 A2 4 4 V]

Co[ A9+ AT L AT e N+

oA+ O\

AL 4201029 + (2¢9(t) + 1 (£)2)A2972 + ..

(cg + C1Cg—1 + CaCg1 + C3—3 + . )AIT! + (cieg + cacg_1 + . )N + 2 + O(A 1)

A29TL 1201 (0)A29 + (209(t) + 1 (£)?)A2972 + ...
g

+ D enBegmONT 4 (3 cmD)egiiom(t) +2)N + O ).

m=0

I+ + +

+

]

Let Io()\) denote the part of h(\) consisting of A2 A% . N and Iy, I, ..., I,

denote the coefficients of N971, \972, ..., \? respectively, then
h(A) = Io+ LA+ LA+ .+ 1, (5.32)
where [y(A) is a kinematical quantity that is independent of the solution of the PI

hierarchy in equation (3.13).

Remark 5.7. In the case of the Mumford system (5.4), these coefficients I, I, ..., I,
are Hamiltonians of commuting flows. More precisely, it is not these coefficients but

their suitable linear combinations H;, ..., H,.
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5.3 Hamiltonian structure of PI hierarchy

In this section, we will define new Hamiltonian H, ..., H, that used to derive the

Hamiltonian form of PI hierarchy.

By the definition of the Poisson bracket {f, g}(V(\)) =< V(N), [df,dg] >, we

can define the Poisson structure between the element of the matrix V() by

(V). Vi) = L= V”(”))(Sj;: (kaj(k) ~ VgD (5.33)

where 0, is the Kronecker delta [28].

The Poisson structures between the elements of the matrix V(\) are given by

{a(A),a(p)} = {B(A), B(n)} =0,
{a(N), B(w)} = 23 B(“v {a(N),7(n)} = —13=), (5.34)
(B, 7w} = T) {v(A), 7 (1)} = 0.

Using equation (5.33), the definition of V() in equation (3.41) and the definition

of 9;:, we have

(V). V() = {a(A), a(p)}

(Vi (A) = Via ()01 — (Vis(A) = Via(p)) o1

A—p
_ (a(N) —a(p)dn — ((A) —a(p)dn _ 0
A—p

BN, B} = - Y
(o). oy = PRI La(A)—am))am
B - B
A—p



A—p
_ ) =)
A—p
_ (@A) = afp)d — (=a(A) + a(p))dn
{BA) ()} = -
_ o) —ap)
= 2 N
Now we define the Poisson structure between V/(A), h(u) by
(VO hG} = V). T + 500 B (5.35)
Lemma 5.8.
{VA), Inia} = [Va(A), VN, (5.36)

where V,,(\) is a matriz of the form
V) — ( () (M) ) | (537)
A —an(A)
with the matriz elements
an(A) = (A"7a(A))zo,

Ba(A) = (A"9B(N))>o0,
Y(A) = (A"799(A)>0 — Bnta, n=0,1,2,..,9— 1.

Proof. 1,11 can be extracted from h(\) by a contour integral of the form

7{ dr =gy,
n+1 27’(’2

where the contour is understood to be a circle around p = oco. The same contour

integral applied to equation (5.35) yields the Poisson bracket in question

) dun} = § S VO, )} = VO, § 3B )
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By equation (5.35), we obtain

Aoy (0, ) g B

2mi A

= VO gt v o) f S B
dp g V(1) dp g

5T VO) - § BBV ),

VO Tt} = VYOIV + V) $ 52 15(0) Ea

= COTIVODLVO) - § o 80 BV ()

211

= VYOIV, + 30 Ea)

= (Fovon - f s ) vy

— (VO = S I8 Ean). VOV

271

Now

=

]{ O j{ d_ul‘n_gﬂ(“)i%

271 271

_ d” n—g ﬁ(y’) _% dlu n—g+1 ﬁ(lu)
B )\]{ZMM A— L omi" A—p

= MBI,

- Bn—l-l'

=

Thus
VA, Lnsat = [(A"V(A)sy = Bat1Bar, VI(A)]
= [V(A), ="V (N)sy + Bps1 Bl
Let
Va(A) = N9V (N))sy — Buy1 B
Then we have

{VA), L} = [Va(A), VAL
O

We can replace [V,,(A), V(A)] in lemma 5.8 by [U,(\), V(A)] as it is explained by

the following lemma.
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Lemma 5.9.

Vo(A) = Un(N)

(5.38)
Vo(A) = Up(A) 4+ c1()Unt(N) + oo+ ca(OUs(N), n=1,2,....g.

Proof. Since

BaA) = Bu(A\) + () Bua(A) + oo + en(t)Bo(N)
= Ry + c1()Rur(N) + oo+ cn(t)Ro(N),

a(N), v(A\) are connected with 5(A) as

and

() = Ag(\) + () At (N) + .. + ca(t) Ao(N). (5.39)

By the same way, we find

A = =580 Nz + (A = 1) Bu(N)
= —3B2(Naw — 5610 Br1(Naw — - = 56a(t) Bo(Nza
+ A=w)Bn(A) + (A = p)er(t) Baoa(A) + -+ + (A = p)en(t) Bo(A)
= (=3B:(Naw + (X = 1) Bu(N)) + (—=3¢1(t) Byt (Naw + (A = p)er () Baoa (X)) + -+
+ (=56 (t)Bo(Naz + (A = )ca(t) Bo(N)).
Thus

Yu(A) = Th(A) +ca(O)Tn1(N) + ... 4+ ca(6)To(N). (5.40)

Substituting o, (\) and v, (A) from equations (5.39) and (5.40) into equation (5.37),
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V) = AN+ () A1 (N) + oo+ () Ag(N) Bu(A) + c1(8) Bao1(A) + ... + () Bo(N)
" a Lo + ()T (N) + oo+ cn(O)To(A) —An(X) — c1(B) An—1(N) — ... — cn(t) Ap(N)

Ag(N) Bpy(A
+ ot oA Bo(A) )
To(A)  Ag(A)
Using the definition of U, (\) in equation (3.33), we have
Vo(A) = Uy N) +a()Us1(N) + ... + cn(t)Up.
O]
In lemma (5.9), we define new Hamiltonian Hj, ..., H, by the linear equations

]1 :Hl, In+1 :Hn+1+Cl(t)Hn+...+Cn(t)H1, n = 1,2,..,9—1. (541)

Note that H,.; is not defined (because [,;; does not exist). The formula (5.36) of

the Poisson brackets of V() and I,, can be converted to the form
VN, Hysa} = [Ua(A), V(A (5.42)

We can see this by substituting ¢;(t) = c2(t) = ... = ¢,(t) = 0 into equation (5.41)
and substituting /,,+; from equation (5.41) into equation (5.36). As a result we find

{VA), Hopa} = {VA), Inga} = [Va(A), VIN] = [Un(A), V(N

Theorem 5.10. Except for the tyy11 flow, the matriz Lax equations (3.47) of the

PI hierarchy can be written in the Hamiltonian form
Ooni1VN) ={V(A),Hys1} + U, (N), n=0,1,2,....,9— 1, (5.43)
with the Hamiltonian defined by (5.41).
Proof. By equation (3.47) and (5.42), we have
Oan1V (A) = [Un(X), VIV + U (A) ={V(A), Hpa } + U, (N).
[

Remark 5.11. Iy(\) is a central element ”a Casimir function” of the Poisson algebra.
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5.4 Spectral Darboux coordinates

In this section, we will construct Spectral Darboux coordinates. We can reconstruct
the L-matrix V' (\) from this coordinates and we will use it to define the Hamiltonian
H,. .

The construction of ”Spectral Darboux coordinates” is also parallel to the case
of the Mumford system. These coordinates consist of the roots Ay, ..., A, of B(A) and
the values pu, ..., pty of a(\) at these roots of S(\):

g
=IO =X), w=aly), i=12.¢ (5.44)

j=1
To avoid delicate problems, the following consideration is limited to a domain of the
phase space where \;’s are distinct. \; and p; satisfy the equation p? = h();).
As it follows from (5.34), these new variables satisfy the canonical Poisson relations
[29]

A =0, {pj =0, {N,pe} =0k 5, k=12,..,9. (5.45)

Thus A;’s and p;’s may be literally called Darboux coordinates.
We can reconstruct the L-matrix V' (\) from these new coordinates. We use the

familiar Lagrange interpolation formula

S0 A
T2 00 40

which holds for any polynomial f(\) = fi\~! + ... + f, of degree less than g.

Since

B 9B (%n
A= 0N aA ’

(5.47)

we have

Z ﬂ 8”8 n (5.48)

for the coefficients of f()) as well. Note that f3,,’s are being functions of A;’s.

We apply formula (5.48) to a(A) and obtain the explicit formula

i ad 86 ”. (5.49)
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Define:

FO) == LA™ =h(\) = L)), (5.50)
ne1
where I p2 —Io(N;) 08,
I, = — ; 00 (5.51)
For instance at n = 1, we have g—’i =1.

92
. i — Io(Ay)
Thus we obtain I} = — Y —L—— -~
]Zl B(A))
By the definition of [y(A) and equation (5.31), we find

Io(A) = N4 20, (DA + (2ea(t) + ea(t))N92

+ ) e OXNT (O cmlt)egra—m(t) + )N

Since a(A\) and h(\) are reconstructed, we can recover v(A) by equation (5.3) as

YA = h(A)ﬁ_(;;(w
Lemma 5.12. If
Bu(N) = X"+ BN 4+ B, (5.52)
then 0,
N —Bno1(Ny),  n=1,..9 (5.53)

Proof. Start by equation (5.44)

1=1,i#j J
N _ B
= A (5.54)
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By equation (5.54) and 5(A;) = 0, we have

050N _ B —BO)
O\ A=

By dividing A" — )\? by A — A;, we get

7
A=A

5n = =BT AT AT AT,

This leads to the identity

IB(A)
OX;

R A W2 D L e ey O N 20 i E U
( J 61) ( 7 Bl 3 Bg 1) (555)
- —)\gil - B1(>\j))‘972 T e - ﬁgfl()\j).
By equation (5.47), we obtain
/8()\) _ aﬁl ZElyg- 1 %AQ—Q . 8/89

- — . 5.56
=N 0N o oA, (5.56)
By equations (5.55) and (5.56), we obtain
Bn

=1,..,9.

8)\] /Bn 1( ) n 1o g
0

By these identities, we can rewrite (5.51) as
:uj - ]0

A Z n(Aj), n=01,..,9—1, (5.57)
Brn(A) = Ry(N) + c1(t)Ru—1(A) + ... + cn(t) Ro(N). (5.58)

Choosing ¢1(t) = ... = ¢,(t) = 0, we have (,(\) = R, ().
Comparing this linear relation with the linear relation (5.41) among I!s and H] s,

we find that the Hamiltonian H,, | can be expressed as

I ‘ _
Hyyq _ZWRn(Aj)’ n=20,1,..9g—1.

Now we compute the Hamiltonian for n = 0, 1,2, and write the I! s as linear combi-

nation of Hamiltonian Hs.
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Example 5.13. When n = 0, we have

= W)
Using equation (5.57), we obtain
Hy =1, (5.59)
When n = 1, we have
H, — zg: b = 10()\3')}%1(A )
= W) ’
By equation (5.58), we have
g2
D YO RAT)
Using (5.57), we obtain
Hy=1I,— (), = I — e (t) Hy. (5.60)

As a result, we obtain
[2 = H2 + Cl(t)Hl.

When n = 2, we have
g 2
15 — Io(A))
H; = T Ry(\).
3 ; B'(A) (%)

By equation (5.58), we have

Hy = Z“J 0 D (6,00) - OB O) — ea(0)

Zu] 6’ ﬁz( D) —a®)(Bi(N) = a(t) = ealt)).

In this case, equation (5.57) gives

Hy = Iz1—c(t)s —co(t)y + ()],
= [3—Cl(t)<H2+Cl(t)H1) _CQ(t>H1+C%(t)H1
= ]3—Cl(t)H2 —Cg(t)Hl
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Which implies
13 = H3 -+ Cl(t)Hg + Cg(t)Hl.

Now we will drive the the Hamiltonian structure of the first and second members
of PI hierarchy.

Example 5.14. When g = 1, by equation (3.42), we have
B(A) = Ri(A) + c1(t)Ro(N).

Substituting R1(A) and Ry(\) from equation (3.35) and (3.10) into above equation,

we obtain

B =\ + g +el(t). (5.61)
By equation (3.42), we obtain
o) = BN = o
1) = BN ae + (A —w)BOV) (5.62)
_ 2
= Tlum + 2%+ g/\ + (A — Au — % — c1(t)u.

Substituting S(A), a(A) and v(\) from equations (5.61) and (5.62) into equation
(5.3), we obtain

—1
B = N 200 (0) 4 A M — (1) %ﬁ +a(t)?)
1 1 1
+ 1—6ui — gUllzz = u?ey (t) — Zu?) — ch(t)uwx + uey (1)

Since from equation (5.32), we have

1 1 1 1
I = Sou = Sty — wen(t) = Ju’ = S (g + uer (£)”

From equation (5.59), we have

1 1 1 1
H, = Eui - gUas — u?cy(t) — ZLU?) - ch(t)um + ucy (t)?,
which is the Hamiltonian structure of the first member of PI hierarchy.

Example 5.15. When g = 2, equation (3.42) gives
B(A) = Ra(N) 4+ c1(t)R1(N) + co(t) Ro(A).
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Substituting Ra(\), R1(A\) and Ry(A) from equation (3.35) and (3.10) into above

equation, we obtian

B(N) = A2+ )\( +e(t) + éu + guz + cl(t)g +oo(t). (5.63)

By equation (3.42), we obtain

Aug 1 3 .
a)) = — Z — e — Sul, cl(t)“?
1 1 1
YA = N — §A2u + A% () — —Uga ) — §u2)\ — —c1(t) M %uuxx (5.64)
3 1 1 3
+ ()N — §u3 — 3¢ (t)u? — ucy(t) — g Yaae ~ gui Zumcl(t)

Substituting S(A), a(A) and () from equations (5.63) and (5.64) into equation
(5.3), we obtain

R(A) = N +2X e (t) + N (e () + 2¢a(t))
5, 5, 1 5 3, 1
+ A2 [—us — —u® — —Upy — UC(t) — —UUzy — —u”Cy () — —Ugrr () + 2¢1(t)ca(t)]
16 18 16 15 1 8 3 4 4
+ /\[CQ(t)2 + Uy — —ut — —uix — — Uy (1) — c1(t)ca(t)u — Zuley (t)Q]
32 64 64 4 4
A s — SU26(t) — LU () — 218 — Pty — e (t) — = (2)
S zxx — 7UWC —zuc — —C xx ~ 44 xxr s rxrx
32 e mgha g N e = gt e T e T
b (Dt — er () tttane — 2(t) 2 — Ser (D ttaalt) — oy (F)tpat® —
aa xWxxr — G4 xxxr - UgzC — -=C Ugz U
327" 327" 2 4" 2 327" 64 °
15 1 1 1 1 3
— 6—4u3um — 3—201(75)%2“ + Ecl(t)%i ~ {og Yasatlos — 1—602(75)%” — ch(t)u?’ — -
3 1 3 3
— gCQ(t)ui — 1—6u fm — @u%mm 8U4C1(t) —— (t)2uum Co (D) Uty
+ LUQ + iuuxuxm — —u® + ¢ ()ea ().
250 64 64
Since from equation (5.32), we have
1 15 1 3 3
I = ct)? + uxumm ~ 3 — —4uix — uumcl (t) — c1(t)ca(t)u — Sucy(t)?
L (0 % ) Lt — S~ ety - Lertt
— — Uy — uc — —uic ——c Upy — — U Uypy — —U-C1 (1) — —C1(H)Ugys-
32 47 g ! 4! 16 4=t 16"
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and

I, = 3%01 (D) UptUpze — 3%01 (t)Utlggy — Co(t)?u — %cl (t)ugzco(t) — ;—201 (t)ugpu® — %uium
— é—iu?’um - 3—1201(25)@33 + 1—1661 (t)*uZ — %umum - 1—1662(t)um - ZCz(t)u3 - ;101 (t)*u’
— gcz(t)ui - 1_16“U§x - %Uzumx - §U401 (t) — écl (t) g, — 202(75)““1‘1‘
+ L 2 + iuuxumx — gug’ + 1 (t)ea(t)u.

From equation (5.60), we have
H2 = _[2 — Cl(t)ll

which is the Hamiltonian structure of the second member of the PI hierarchy.
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Chapter 6

The Hamiltonian structure of

second Painlevé hierarchy

In this chapter, we introduce canonical coordinates Py, ..., P,, @1, ..., @), and a Hamil-
tonian function H™(Py, ..., Py, Q1, ..., Qn, z) such that the n-th member of the sec-
ond Painlevé hierarchy is given by the equation [27]

dP; oM™ dQ, ~ OH™

_ _ E=1.2....n.
dz 90, dz 0P, Sy T

6.1 Isomonodromic problem for the P;; Hierarchy

The isomonodromic deformation problem for the P;; Hierarchy (4.31) is given by:

or _ B\P:(_)\ w)xp,
0z wo A

ov -z —«
= = Amgy =1 L V4O H MO U,
Z () e S
where
2041 2
)y 0]
ORI S
MO = j=1 j=1
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AD =4 Al =0, k=0,.,1
Ag]erl 4k+1 {El k[wz w2] - _( + 2'(1])61 k— 1[ w2]}7 k= Oa
Bélk)+1 416%1%(_—’_211})& k— 1[w2_w2]? k_ow“al_la
By AL 4 2wl yfw. —w?], k=1, ...,
I
Cék)—&-l By, k=0,.,1-1,
)l = BL k=0,..,L
By equation (6.1), we have
0w
0?w _ a(5y)
020\ 0z
_0(AM)
B 0z
_ aA<"> L gm2¥ oA
0z 0z
..oV
Substituting 5 from equation (6.1) into equation (6.3), we have
?U  9AM
= U+ A BV
gz0n 0z
Similarity
0’V OB
= —U+ BAMY
Y
Equation (6.5), yield
0A™ 9B
— 2= —[B. A
0z oA B, )
A™ can be simplified by introducing some new notations.
Define
n l
aék:)-i-l = ZtlAglz—&-l? =12, .. Ztl 2k+1 %
n 1)
bék)Jrl = Z tlBékJrl) = 0, 1, ,n — ]_7
bg,z) = 1,2,...,n, b(()") = —qy,

Z uBY, k=
=1

26

(6.2)

(6.4)

(6.5)



where t, = 1. Then A™ can be written as [27]

n

Z aggrl)‘%

A (\) = 5, F=0
k=0

57

2n
Z b}({”) A1
k=0

- Z agl?-f—l)‘%
k=0

(6.8)



6.2 Coadjoint orbit interpretation

In this section, we will define the total derivative of any function and study another
lemma of the coadjoint action. In the end of this section, the Poisson brackets be-

tween the coefficients agz)ﬂ, bg,i) and bg&l are computed.

Given any function f of A\ z,w,,w..,..., we will denote the total derivative of f
with respect to z by 0, f. That is

o Oy O

0:f = 0z * ow ow,

The explicit derivative of f with respect to z is denoted by 0¥ f, where w, w,, w,., ...
are treated as independent variables. Analogously, d, f denotes the total derivative
of f with respect to A.

Now, we will show that

OvA™ = 9,B. (6.9)

Since aY‘) is the unique element of A™ that depends explicitly on z, by equation

(6.8), we obtain
ovAM = -1 0 ,
0 1

On the other hand, from equation (6.1), we obtain

-1 0
O\B = :
0 1
So that equation (6.6) can be written as

(0. — OW)A™ = [B, A™], (6.10)

We are now going to interpret the evolution along (0, — 0¥) as a vector field on a
coadjoint orbit of an element of an appropriate twisted loop algebra. Let LG be the

group of smooth maps f from S! to SL,, S! is circle with radius one, such that

4 B 01
f(A)Ol(f(_A)) =1, 01—(1 0)7
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and ) is considered as a parameter on S'. The subgroup maps of the form f =
I+ X272 f_ where f. is holomorphic outside S! is denoted by Lo, 2G. Let gonia
be the Lie algebra:

—2n—2
Jont2 = (X()\) = Z )(Z/\l|)(Z € gl(2,C),X(/\)O'1 = 0'1X<—/\)> .
Define GG by the quotient of these two groups:

G = LG/Lon12G,

whose Lie algebra is given by
g= <X<)\) = ZXZ)\Z’XZ € gl(27 C)7X()\)Ul = UlX(_)\)> /92n+27

with Lie bracket defined by

X)X = ( ) [Xmmu)]) X mod g

i=—2n—1 \k=—-2n-—1

This implies that [X(\), X(\)] € g and satisfies the Jacobi identity. The dual space
g* can be identified with

g = (5()\) =) EN[ieN,Z € gl(2,C), E(N)or = —015(—>\)> /Gans2

—0o0

Oonio = (X(/\) = i X\|X; € gl(2,C), X(N)oy = 01X(—A)> .
2n+1
Define < Z(\), X(\) > by
<Z(\), X(\) >:=Tr(ResX (\)Z(N)), VX(\) €g, 2()) € g, (6.11)

where Res indicates the formal residue, i.e. the coefficient of the A=! term.

Consider the subalgebra
-1
The dual space of (6.12) can be identified with

g = (E()\) = ENZ € gl(2,C), E(N)oy = —015(—)\)> /D242 (6.13)

0

29



An element X in the Lie algebra g acts on an element = € g*, by the coadjoint
action

<adyZ .Y >=—-<Z [X,)Y] >=< [X,5],Y > (6.14)

for any Y € g.
By equation (6.11), we have

<adyZ )Y > = —<E[X,Y]>
—Tr Res([X,Y]2)
= —Tr Res(XYZ - YXE).

Since Res Tr(A)=Tr Res(A) for any matrix A, we have
<adyZ Y > = —Res Tr(XYZ-YXE).
Using the linearity of the Trace operator, we obtain
<ady¥=Z,Y > = —Res(Tr(XYZE) - Tr(YXE)).

Using Tr(YXZE) = Tr(EY X) = Tr(XZY) and Tr(XYZ=) = Tr(YEX) = Tr(EXY),

we find

<adiE.,Y > = —Res Tr(EXY — XEY)
—Res Tr([Z, X]Y)
<Y EX]>
= <[X,Z],Y >.

This shows that for every X € g, = € g*
[X,E] =ady= € g".

When we restrict the coadjoint action to the subalgebra g_ and to its dual space

g*, we obtain
[X_,=]; =ady E, =eg, X_€g_, (6.15)

where (.); is the projection from g* onto g* and (.)_ denotes the projection onto

g_.

Lemma 6.1. Given the matrices B and A™ as in equation (6.1) and (6.2), one
has
(B, A™] = ady A, (6.16)
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where B = (%) €g_ and A= (A™), € g*, which is the dynamical part
of A,

Proof. Using equation (6.8), we have
(A(”))\‘2”+1) s R RPN
4 + 4 bgi _agi)-i-l)‘
Z tAD) )\ Z 1By,
— =1 =1
4n n n
Z tlBéQ - Z tlAé?H—l)\
=1 =1
Sincet; =ty=..=t,_1 =0, t, =1 and Béz) = —4™w, we obtain
(A(n))\—Qn—i—l) 1 ( 4n )\ Bég) >
qn " 4n BSZL) —4" )\

- (2)

= B.
A(n) \~2n+1
Using B = (4—n) to calculate [B, A™], we obtain
A(n) \—2n+1
AV = () A
4n _
Using A™ = (A™), + (A™)_ and bilinearity of | , ], we have
A(n))\—zn-i-l A(n))\—Qn—i—l
B = () A () At

Since (A™)_ and <%> commute, we have

A(n))\—Zn—i—l
(F5) -0
m )
Hence it follows t};&t) -
n )\_ n n
B = (S o]

- ]
(n) y—2n+1
e
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A \—2n+1
Remark 6.2. We want to compute ad}kA(”) for X, = (—) .

4n
For every Y € g_, we have

A(n))\—2k+1
<ady AM)Y > = < [( T JAMLY >
A() \—26+1N . A(m) \—2k+1 .
= <[<4—k) ,(A( ))_]’Y>+<[(T) ,(A( ))+],Y>
A() \—2k+1 .
- <[(FH—) s,

Similarly we can prove that
(0. — 0¥)A™ = (0. — O¥)A.

Since (9, — 0¥)AM™ = (9, — 9¥)(AM), + (0. — 0¥)(A™)_, using equation (6.1), we
obtain
(0. — 9)(A™)_ =0,

Thus (9. — 0*)A™ = (9, — O¥) A.

So, from above, we can write the following lemma:

Lemma 6.3. The monodromy preserving deformation equation (6.10) is the same

as
(0, — OW)AM = ad A (6.17)

where A = (A™), € g* is the dynamical part of A™, B = (MX cg_.

The Poisson structure on g* is given by observing that every X € g_ defines a
linear function X, on = € g* :
g — C
X, :
=—<E X >
This fact allows one to identify g** with g_ and to define the Poisson bracket between

two linear functions on g* by
{f.h}(E) =<E,[df,dh] >, (6.18)

where the differential df of a function f on g* is a linear function df € g™ ~ g_
defined by
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< df, 02 >1= f(E+6(5)) — f(2) + Q4:(2))*, (6.19)
and 9,(2)) :=ad\= € g*.

Define the so-called Kostant-Kirillov symplectic structure w by

w(f,h) ={f.h}, (6.20)

for every pair of functions on the coadjoint orbit [27].

To compute the Poisson brackets between the coefficients agk)ﬂ, b(n) and b(% ‘t1, We

observe that their differentials are

dagz?ﬂ = %(Ell — Epg) A~ (kD) for 0 <k <mn,
o), = L(~Zpp+ Ea) AR for 0<k<n-—1, (6.21)
dvsy) = 5(Z12 + o)A for 0 <k <mn,

where with a slight abuse of notation, we are calling ag,z)ﬂ, bg’,j;l, and b?) the cle-
ments of g** ~ g_ which applied to = producing the coefficients a% 1 b(2711)+1> and bg;)
respectively. By using these gradients, we can compute the Poisson brackets between

the matrix entries

{aéﬁiﬂ,bgﬁl} = bm+l+1) for0<m<n, 0<Ii<n—-1 m+Ii<n-1,
{ag;ﬁﬂ,b;?)} = —b m+l+ for0<m<n, 1<I<n, m+1<n-—1,
{bzm, 2711} = aé(znﬂ) for1<m<mn, 1<i<n—-1 m+1<n,

(6.22)

while all other brackets vanish.

By equation (6.8), we can put Z(\) = A™()) € g*. Using equation (6.21), we have

1 0
day) ., = Ix-CmtD) for 0 <m <mn,
0 —1
(n) _ 1y—(2+1) 0 -1 _
dby,, = 3A Lo for 0<I<n-—1, (6.23)
01
dbg]z) = % ( Lo > for 0 <k <n.

Using equation (6.23), we can compute the commutation between dagg 41 and dbg;}rl
by

[dagrbr)z-i-lv dbgl?—l] = dag;r)wrldbé?j& - dbgl?—ldagg—i-l

C1\—2(m 0 1
— 71/\ 2(m+1+1) ‘
10
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Thus, by equation (6.18), we find that the Poisson brackets between ag;z 41 and by 1y

are given by

a’g;r)rf—l? 27411 = <z [dag?r)whdbg?}rl] >

= < 57 _1)\72(m+l+1) 0 1 >,
2 10

By equation (6.11), we obtain

01
{a2m+1,bgf+1 = Tr Res _Tl)\*Q(mHH) =
10
=  Res Tr [ =L\ 2(m+i+1) 01 =\
? 10

By definition of =, we have

{a’2m+17 27411} = _1 Res (22()% 2(mA4-14+1)+2k— 1)

= —b(m+l+1) for 0<m<n, 0<I<n—1 m+Il<n-—1.

Similarly, we can calculate the Poisson brackets between a;?,z 41 and bg) by

[daggﬂvdbg?)] = da grlgbﬂdbgl) - dbgll)dagrg+1

—  1y-2(m+)-1 0 1 '
? -1 0
By equation (6.11), we obtain

0 1
{G/2m+17 } e Tr Res <%)\—2(m+l)_1 ( _1 0 ) E)

By definition of =, we have

—_

B
Il

0

{ag:)z—i-l’ béﬂﬁ = % Res (—2 bg;)Jrl)\—2(m+l)—1+2k>
= —b"2n+l+ for()ﬁmﬁn,lglgn,m_i_lgn_l
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In the same way, we can calculate the Poisson brackets between bgﬁg and bg?}rl by

[db(n)

2m>

dbg;}ﬂ] = db%dbgﬁl _dbg;}rldb%

— l)\—Q(m-H)—l L0 )
? 0 -1
By equation (6.11), we obtain

1 0
{bg:rzabglil = Tr Res (%)\Q(m+l)1 ( . ) E)

= Res TIr (

N
>~
©
3
+
I
VR
o
|l o
—_
N~
[1]
~__—

By definition of =, we have

{bégvb(zz)ﬁ = % Res <ZZG§ZL1A—2(m+l)—1+2k>
k=0
= iy forl<m<n 1<I<n—1 m+i<n
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6.3 Canonical coordinates for the isomonodromic

deformations

In this section, we will build the canonical coordinates for the second Painlevé hier-

archy by using the general framework of the algebro-geometric darboux coordinates.

In this setting one considers the spectral curve

L A) = Q(u, A) = [11* = — det (A" (V)] (6.24)

where Q(u, \) = [det(ul — A™()\) = 0].
Denote by ¢ the A-projection of the generic point in the divisor of ¢ [27]. We fix

the following normalization
(c1,2)0(q) = 1,
for some choice of ¢, co. The ¢; variables are the roots of

T A1a(q;) — cr162(Ani(q;) — Ana(qy)) — 3An(g;) = 0, (6.25)

while the p; variables are the eigenvalues

p= (Antw) - Laula) ) (6.26)

where A = [A;;].
Choosing the normalization ¢; = —co = 1, we get roots ¢, ..., g2, such that ¢,4; =

—qj, j=1,...,n. They are the roots of the following equation:

[y

3

(b5 + asp)a2F + by g = 0, (6.27)

0

i

Substituting Ao, A1, Agg, Agy from equation (6.8) and ¢; = —c = 1 into equation
(6.25), we have

2%k—1 n 2% n) 2k—1 _
Zb% q; +Z bék)Jrlqj Z%kﬂ% Za2k+1 q; +Z b2k+1qj Zb2k)qj
k=0
Which implies that

Z<b(k+1 + aék)-i-l)q] + agn)ﬂqj = 0.
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The corresponding p; are given by

Z bgk q32k 1

Substituting Ajy, A2 from equation (6.8) and ¢; = —cy = 1 into equation (6.26), we

have
Z a%+1q] + Z bgk quk T4 Z b%+1 q - (6.28)
Substituting Z azk+1 Z b%Jrl 2k from equation (6.27) into equation (6.28),
k=0
we obtain

2k—1
Eb%J .

In the generic case, the coordinates ¢y, ..., G2n, P1, ..., P2n are canonical with respect

to the Konstant Kirillov Poisson structure as well

{piapj} = {%‘,C]j} =0, {pi7Qj} = 0;5. (6.29)

Theorem 6.4. Consider the following:

(n) (n) n
Qs + by, 1 95,
(n—k)+1 2(n—k)+1 (n) 27
Pk:HQk: = n ) Qk: E _bQJ ) ]{7:1,...,71,
gn)-i-l j=1 2y Ollyy,

where Sy = qu fork=1,...,2n and 1ly,...,1l5, are the symmetric functions of

qi,---5q2n -

Ih =g+ ¢+ .. + g, M= Y e In = ¢1G2---G2n- Then
1<j<2n
(1) Py, ..., Py, Q1, ..., Q, are coordinates in the symplectic leaves.

(2) Pi,..., Py, Qn, ..., Q, are canonical, namely
{PHPJ}: {QHQ]} :07 {ID’MQ]}:dLj

Proof. We want to prove the second part of our theorem, that is, the coordinates
P, ...,P,,Q1,...,Q, are canonical. First let us compute the bracket { P, P}
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Since the pracket is bilinear, we obtain

(n) (n (n) (n)
Ui _pyr1 T 0y (n—k)+1 d2(n—1 + b, 2(n—1)+1
{Pk, Pl} _ { ( )+l )+ ( )+1 )+ }

(n) ’ (n)

a2n+1 @2n+1
() e B~ {al) B (6.30)
= T a2(n k)+10 2(n—l)+1 aQn 1)+17 k)+1 :
(a2n1+1)

(n) (n)
(a(n) )2({a2(nfk)+1’a'2 n— l)+1} + {b (n—Fk) +1>b 2(n— l+1})
2n+1

By equation (6.21), we have

—0 = pm» (n)
|=0=1b 2(n— k+1’b (n— l)+1]

dal" (6.31)

(n)
[da2(n7k) (n—1)+1

+10

By equation (6.31) and equation (6.18), we obtain

(n) _ yp(n)
{a2n k)+10 Y2(n— l+1}_0 {b (n— k)+1’ +1}

Equation (6.30), gives

{P,, P} = o )< (O UG Sl () AN A Y )
2n+1

b(n)

o(n_k)11) rom equation (6.22) into

Substituting {b( (e l+1,a2(n . +1} and {CL2n D410

the above equation, we have

1 (n) (n)
{Pka Pl} = (n) o (_b2(2n7k71+1) + b2(2n7kfl+1)) =0.
2n+1)
Therefore
{Pk, Pl} = {Hgk, Hgl} = 0, k?,l = 1, ., . (632)

To compute the brackets that involve @y, we make use of the following formula:

(Y M) =D (=115 (6.33)
j=0 k=1

where 7 is an auxiliary variable.

Since in equation (6.27) the roots of the polynomial

n—1
Z(bg&l + agl?ﬂ))‘% + aéﬁlﬂzn =0,
k=0
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are given by q1, ..., ¢n, —q1, ..., —Gn, We obtain
2n
_ _ 2k+1 _ 2k+1  2k+1 2%+1_  2k+1_ 2k+1 2k+1 _
g1 = Sop1 = g G T =q ta o tete -~ ——q, =0
j=1

Therefore, by differentiating equation (6.33) with respect to Ily, we can express

-1
0S; _ - 0
— 9 Ty , 6.34
T (Z 2 (6.34)
=0 2 —2k
where [X (7)]aj_2x is the coefficient of v%=2% in X (v) which is a power series in v
near 0 .
By differentiating equation (6.33) with respect to Iy, we find
1 oS 1 98 1 98
=" = o e S R
. Ollyy, 2 01y 3 Ol
>
=0

Since Syj41 = 0, we obtain

L 108, , 108, , 108S

et G el M LR
. 2 011 4 011 6 011
Z Hj'y] 2k 2k 2k (6.35)
=0
Dividing the equation (6.35) by v?*, we obtain
1 _ _1 95y 5 ok _ 1 951 4ok _ 1 956 ok _
< T 200y, 1010y, | 6 OlLy, |
pILIEY
=0
By comparing the coefficients of 7272¢ we have
1 B 1 652j
= | T yom.
Z ijy] J 2k
J=0 2j—2k

Since j < n, j — k < n and the coefficient of v*~2* enter in (Z Io;v*) ™!, we have
i=0

852]- . - 2%\ —1
= —2[(> M) oy on.
aHQk ] [( pr 217 ) ]2.7 2k
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Compute the bracket { Py, Q;}.
By definition of Q;, P, = Ily; and by Leibniz’ Rule of {, }, we have

- n) 0Sa; 198y =1 @ DSy,
{Pr, Qi} = {H%Z gj 8H]} Z{sz, 2 J5; 8H]l +;2—ij]- {sz, j}

7j=1

(6.36)

is a polynomial in Il,,, with m < j, and

0S5,
Thus, by equation (6.34), we have ——2
0Ty

from equation (6.32), we have the second term in (6.36) is zero .

Then equation (6.36) becomes

(6.37)

n

n —1
zwwé?} (z)
§=0

j=1

2j—21
By definition of IIy, and bg;) . we have

(n) (n)
a +b
Aont1

By linearity of bracket { , }, we obtain

(T, ) ({0057} + {050 a0 087D

Substituting {a2 (k) 417 7;)} and {b( bg;)} from equation (6.22) into the above

(n—k)+1°
equation, we have
Mok, bo;'y = 5= (0ysgysr = Do)
Aon+1
= —Hz(k_J)
Therefore
{TIyy, bg’;)} = —Ilz4—j. (6.38)

Substituting {1y, bg;)} from equation (6.38) into equation (6.37), we have

n n -1
{Pe,Qi} = — Z - (- Z H2ﬂ2j)
j=1 J=0
= > Mgy (
Jj=1 J

2j—21

3

1
H2j'72j)
—0

2j—21
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n

n n -1 -1
Since {le Qz} = Z H2(k7j) (Z H2ﬂ2j> = Z 2(k—j) (Z H2J’Y ) )
j=1 §=0

25—

9j—o I

we can replac the sum from 1 to n by a sum from [ to n in the last equation because

n —1
j=0

does not contain any negative power . Since the expression
n n -1
j=1 j=0

is just the coefficient of Y2~ k < n in

n n -1
<Z H2i72i> (Z H2j'72j) =1,
i=0 Jj=0

the expression

2j—21

we see that
{ Py, Qi} = 0.
To compute the brackets between ), and @); , we note that
0S5 05y
by b 4222y — . 6.39
{ 25 } {81_[2]4’ aHZl} ( )

The only contributions to the bracket {Qy, @;} come from the cross terms

B n 1w aSQJ 1 (n) 8527«
{Qr,Qi} = 2{2]623 Oy, 2ib2i 3H2z}.

i,7=1
By Leibniz’ Rule of the bracket, we obtain

Qn@) = > = (L et A >} 2 by {— et R Ay
— 27 \ 25 % Olly, Ollyy, " Olly

2

By Skew-Symmetry of { , }, we obtain

o - l ) (n) aSZJ 8521 (n) 8521 1 852]
{kaQl} - Z% ( b2i ) 2] 8H2k}8H2l { 2] 2] 5H2 }

)

By Leibniz’ Rule of the bracket, we have

n

1 ) g1y 0% 055 _ oy yon) 01, O
Qr, Q = — | =Ip — b’ 4bs,
Q) = 2, 4ij ( o 05 o oy~ 2 P o, o,

ij=1
~ 1 () ;052 )y 0525 () (m) ;OS2 053

§ : [ pl pln _ pmpln .

5= 4ij ( 21 {anm’ % }an% R {6?1'[21’ 81‘[%}
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From equation (6.39), we obtain

n

1 " ny O0S 0S9; 851 055
(0nO} = Z@(‘bgj){béi)7 2 O (T ) S )

1,j=1

By Skew-Symmetry of { , }, we have

N 1 852; 1992 ) 052 )y 059

1,j=1

replacing ¢ by j in the last part, we obtain

83 88 7 88 ¥l n aS 1
{Qr, i} = Z — ( { 2] b }6H2 — 62] {8H2 by }0H2 ) (6.40)
1]71

2 and bé?) can be computed by
2%

-1
05, SRS ; n
{ 2] ’ 2z } {_2] (Z H2i’72 ) ’bgi)}

1=0

2j—2k

The bracket between 05

n -1 n
Since (Z H2m72m> H23725> = 1, we obtain

m=0
n -1 -1 n
( H2i72i> (Z H2m’Y > (Z H2s’728> ,bé )}
=0 s=0

2j—2k

n —2 n
= —2j{ ( HW’") (ZH%%S) 5
s=0

2j—2k

0S5

ot = {27‘[

2j—2k
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By equation (6.38), we have

2j—2k

2j—2k

2j—2k—2i

)

2j—2k—2i

where in the last line, we replaced the upper and lower limit of the second sum by

n , 0 respectively . Because 2j — 2k — 21 < 2(n — i) < 2n, so if p > n — i, the
n

coefficient of ¥? in Z 15,7 will not enter in the final expression.

s=0
Therefore
L 082]‘ (n)}aSQZ
445 Y OTLy, " 2 7 0Ty

1
4ij

[ n -3 n
<Z H2m72m> Z Hzﬂzs
m=0 s=0

n -2 5
2.] (Z H2m’72m> Z H?s’yzg
i ) m=0 G 5=0 i
<Z H2m’y2m) Z HQS/YQS
m=0 s=0

n

Z HQm’Y

m=0

fg)

2j—2k—2i 2i—21

2j—2k—2i+2i—2l

2j—2k—21
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Similarly, the second term in equation (6.40), tokes the form
i -3
1 0S3 (), 052 - 2 - 2
— by, = — Iy, y™ [psvy**
42’3‘{8112[’ 2 }6H2k 7;) o] ; 1

i n -3 n
L m=0 s=0
Since the first and second terms in (6.40) are equal to each other, we obtain

{Qr, Qi} =0.

d2j2k—2

4 2j—2K-2

In summary

{Pr, Qi} = bu, {Ps, B} =0, {Qr, Qi} = 0.

O
Example 6.5. Case n = 1. In this case we will show that
1
Q = 4w, zﬁ(wz—wz—z)
First of all 95
1,05 ()
=Q1==by'——=-b
Q Ql 2 2 aHQ 2
By equation (6.2), we have
Q = 4w
Next " "
P = P = ai +bi
)
3
By equations (6.7),(6.2), and using ¢; = 1, we have
P _ 2(w, — w?) — 2
4
= Lw,—w?-2).
These coincide with Okamoto s canonical coordinates [10].
Example 6.6. Case n = 2. In this case we will show that
Pio= —h?—w.—}),
P, = [—z+ 6w — 120w, + 2w? — dww,. + 2w... + 2t (w. — w?)],
(6.41)
Ql = —Sww, + 4wzza
QQ = 1l6w.
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First By equation (6.2) and using t2 = 1, we have

aéQ) + béz)
O
4ty + 8w, — w?
16
= 1(t1 + 2w, — w?)

4

P1 -

—w,).

Next by definition of P, equation (6.7) and equation (6.2), we have

(2) (2)
a;” +b
p = I,=-"—"1 o !
s
t1(—2w?) + (2w? — dww,, + 6w?) — z + t1(2w,) + 2(w,,, — 6w?w,)

16
= 1_16[_2 + 6’(1)4 - 12w2wz + ng - 4wwzz + 2wZzz + 2t1 (wz - w2)]

Next by definition of @, and equation (6.7), we have

@ = WG
= - + P10,
= —ti(—4w) — (—4(w.. — 2ww, + 2ww, — 2w?)) + (—16w)(—3(w? — w, —
= —8Sww, + 4w.,.,.
Finally
Qo = ibf)g—;‘i = —b? = 16w.
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6.4 Hamiltonian structure

In this section, we will construct the Hamiltonian function, Hamiltonian vector field
of this Hamiltonian function and we will derive the Hamiltonian structure of the

second Painlevé hierarchy.

Proposition 6.7. The vector field

Xe(A) == —[(A"X72F)_ A], (6.42)
1s Hamiltonian with the Hamiltonian function

pm = %TrRes()\l_%(A")z). (6.43)

Proof. Let us denote

L= —(AMN=#)_cg_. (6.44)

Substituting Ly, from equation (6.44) into equation(6.42), we have

To show that it is Hamiltonian and to compute the Hamiltonian function f, we use

the following definition:
wixk ,Y)(E) =< [Y, E],df >, Yeg ,Ecg. (6.45)
Since Ly, € g_, A € g*, equation (6.45) gives
wixe ,Y)(A) =< [Y,Al,df >. (6.46)

By equations (6.20) , (6.18), and by the same method of the proof of equation (6.14),
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we have
wixe . Y)(A) = {xx,Y}HA)
< A, [dxk,dY]| >
— <Ly, Y], A >
—TrRes(A[Ly, Y])
—TrRes(AL,Y — AY Ly)
—ResTr(ALY — AY Ly)
—(ResTrAL,Y — ResTrAY Ly)
—(ResTrkaYA — ResTrf)kAY)
—ResTr(LyY A — LAY
— —ResTr(Li[Y; A])
— TrRes(—Li[Y, A]).
Thus it follows that

wixe , Y)A) = <[V A],—L>. (6.47)
By equation (6.47) and equation (6.46), we find
wixe , Y)(A) =< [V, Al,df >=<[Y,A] ,—Lj > .

This shows that if we can prove that there exist f such that df = Ly then [Ly, A] =
[A, df] defines a Hamiltonian vector field of Hamiltonian f . We are now going to
show that the Hamiltonian (6.43) is such that dh,in) — —L; Forevery X eg_, E €

*

g* , and by equation (6.19), we can identify
[X, E] = ad} = (SxE

Using the definition (6.19), we get

W (A + 0,(A)) — B (A) + Q(6,(A))? =< dh\” 65 A >, (6.48)
dx A = [Y, A] which is the contraction. O

We are now going to show that the isomonodromic deformation Hamiltonian for

the n-th equation in the P;; hierarchy is given by

1
H™ .= —5 4 TiRes (A2(AM)2) (6.49)
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Theorem 6.8. Define:

n—1
n n n an
H( )<P17"'7Pn7Q17" QTH = (Za2l+1a2n 1)— ZbQZ—Hb( ! +Zb2l)b (n— l> 4n’
=0
(6.50)

in which we are thinking ofang, bgfﬂ, b(n) as functions of Py, ..., Py, Q1, ..., Qn, t1,...;th_1, 2.

Then the n-th member of the second Painlevé hierarchy is given by the equation

(n) (n)
an, __ou" Qi _ oM™ (6.51)
dz 8Qk dz 8Pk

Proof. By equation (6.49), we have

1 n n
H® = = CTiRes (A2 (A™)?)

_ _L 1-2n/ g(n)\2
= o ResTr (A'72"(A™)?).

By equation (6.8), and definition of the Trace on the matrix, we obtain

e menia (S ) (Sl o) o (o) (S
k=0 h k=0
_ Zbg]z))\%—l) <Z b%ﬂ)\%) + (Z béz))\%—l) (Z )\Qk 1)
k=0 k=0

k=0
n n—1 n
+ Z bg];) )\2k1) (Z b22+1)\2k> . (Z bg]:;)_t,_1>\2k> (Z b )\2]{: 1>
k 0 k=0 k=0 k=0

n—1
- Z 62k+1/\2k) (Z béﬁll)\%> }
k=0

Collection the similar elements of the above equation, we have

1 n n n n
Hnm = _ nReSQ)\lﬂn{ (Z aé?;hﬁk) (Z aéﬁlﬁ”“) + ( bgz))\%l) ( bg,?)?kl)
k=0 k=0 k=0 k=0
(z 2.0 ) (o))
k=0
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Using the definition of Residual, we obtain

n L) m (n) (n) (n) (n) (n) (n)
HM = o —lay as,_y +a2(1)+1a2(n 1)-1 +a2(2)+1a2(n 9)—1 T T g1y 101 ]

+ [b(’(“))b2(n + 0 1)b(") byt +b”)b ]

(n)y(n) (n)
[b1 b2(n 1+b b2(n -1t +b 2(n— 1)+1b J.
Therefore
n—1 n—1
n _ (n)
H® = Z 21+1 2nl Zb2l+1 2n—1)— +Zb21b 2(n—1)
1=0 1=0
where we are treating a("), b;") as coordinates on the coadjoint orbit. When express-

ing this Hamiltonian in our canonical coordinates, we need to take into account a
shift A due to the explicit z dependence in the variable P,. All other canonical

() o)

coordinates depend on a;”,b; only. To compute this shift we use the following

well-known result [27]:

Lemma 6.9. Let

W (v H (. 2)) (6.52)

be a Hamiltonian system on a Poisson manifold with Poisson brackets {,} and

y = oz, z), be a local diffeomorphism depending explicitly on z. Let the vector
field 0,¢ be a Hamiltonian vector field with Hamiltonian §H . Then (6.52) is a

Hamiltonian system also in the x-coordinates

U — o ()

where
H(x,z) = H(¢(x,z),z) - 5H(¢($7y)7z)

Let us compute this shift in our case. The only coordinate depending explicitly

on z is
P, = 4—n+f( L) A I N /00
So for y = (p1, v, P, @1, -, @n), we have
s _ @n
4n
which gives (6.50). O
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Now we will give the Hamiltonian structure of the first and second members of

the second Pailevé hierarchy.

Example 6.10. In the case n = 1, we will show that the Hamiltonian function for

the first member of the second Pailevé hierarchy is given by

1 1 1

Since n = 1 then by example (6.5), we have Q = 4w, P = 1(w,—w?— %), and

by equation(6.50) , we have

Q

4

= ——[(—2w® — 2)® = (2w,)* 4 204 (—8w)] +
_ ! _4(—w2 - 2)2 — 4w? + 16a1w} + 7
Y P %) wll(-w? = 2) = wi] + 1600w] +
S -8P[(—w2 — g) —w,] + 16a1w} + %

HO = =7 [(a)? = 6" + 2680 +

O
=~ O
=~

Thus
HY = 2Pw? + Pz + 2Pw, — 20qw + % (6.54)

Substituting w = %, w, = 2P 4+ w* + £ into equation(6.54), we have

HO = PL Py 2P@RP w4 %) — 1Qay + €
= 4P+ 1Q+ 1PQ*+ 2Pz — 3Qo.
Now equation (6.51) reads

@ B _ay(l) @ B OHD
dz  0Q '’ dz 0P’

As a result, we obtain

dQ  OHW 1,
- =5 =8P+ Q" +2 (6.55)

dP oH® -1 1 1
Bl =~ _ZPQ+ -0y .
dz aQ ~ 1 7@t gm (6.56)

Differentiating equation (6.55) with respect to z, we find

a2Q dP 1 _.dQ
a2 - S TRl 2

= 8(5F —3PQ+ i) +3QBP + 1Q* +22) + 2
= %Q?’ + Qz +4a;.
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Thus we obtain the equation

2Q

1

Equation (6.57) gives the second Painlevé equation for w = iQ,

2

12 =2w® + wz + .

Therefore we have derived the Hamiltonian structure for the second Painlevé equa-

tion; that is the first member of the Pj; hierarchy.

Example 6.11. In the case n = 2, we will derive the Hamiltonian function for the

second member of the second Painlevé hierarchy;

1 1 1
HP = —16P} + 8P, — q2Q2+ 2Pz + 1—6P2Q§ +32P Py — Pit? — 8Pyt; — 1—6Q§.

(6.58)
Since n = 2 , equation (6.50) gives
@ _ 1o o _ o L@
HO = 2aPa® — 26Pp2 4 2pPp 1 ()2 . (6.59)
16 16
By equation (6.7), we have
al? = —2tw? 4 202 — dww,, + 6wt — z,
aéQ) = 4t — Sw?,
b§2) = 2uw,,, — 120w, + 2w, t,
b2~ 8w, (6.60)
b(()2) = —Qg,
by = —16w
bg) = 8w’ —4tw — dw,,.

Substituting a?), aéQ), b§2), b:(f), b(()Q), bf) and b§2) from equation (6.60) into equation

(6.59), we obtain
1
HO = 1 [2(—2t1w” + 2w? — dww,, + 6w — 2) (4t — 8w?)]
[2(2w,.. — 120w, + 2w.t;) (8w,)] (6.61)
Q2
16

—_
|H®|H

(3200w + (8w® — dtyw — dw,.)?] +

—
D
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By equation (6.41), we can rewrite w, w,, w,,, and 2w,,, — 12w?w, + 2w, t; in terms

of P, P, Ql, Q2 as

Q3

z = 2P — 5

v " 62 T 2

1 8Q3 1
Wy = ZLQ1+Q2P1+(1) ——Q21;
4 1 1

2wzzz — 12w2wz + sztl = 16P2 +z— 3@ - 8P1 39 P1Q2 + 4P1t1 - §t1 +
(6.62)

Substituting w, w,, w.., and 2w,,, — 12w?w, + 2w,t; from equation (6.62) into

equation (6.61), we obtain

1 1 1
HP = —16P} + 8P, — g2 + 2Pz + 1—6P2Q§ +32P, Py — Pt — 8Pyt; — 16Q2
Using equation (6.51), we get
ap, - 9H® 1
dz  0Q, 8°"
dPy oH® 1 1
_— = — = — — —P
dz 90, 3™ gh
(6.63)
dQ, OH®
= = P = —48PF + 16 Pty + 22 + 32P, — 1,
dQs oH® 1,
- = Q2+ 32P — 8t
dz o5, ~ 16 T3 —8h
As a result, we obtain
d2Q2 3
d22 — (16)2 + 4P1Q2 - tlQQ + 4@1 (664)
Differentiating equation (6.63) with respect to z, we find
d*Qy 6 dQQ dQs dPy dQs  dC
— = + 4P, 4 —t 4 6.65
dZ3 ( ) Q2 1~ dz + QQ 1 dz + dz ( )
dQ, d dP
Substituting Q2, @ and — from equation (6.63) into (6.65), we have
dz = dz dz
d’Qy

= Q5P — Q2t1 + ——Qj5 — 64P? + QlQQ + 128P, + 4t +82.  (6.66)

dz3 2048
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By the same way, we can differentiating equation (6.66) with respect to z, we obtain

d'Q>

dz4

5 5 7
= 3—2Q1Q§ +40Q2 P — 24Q2 Prty + 1_6Q§P1 + §Q2t%
(6.67)

5 3
- 6-4@3151 + @QS + Qo2 — 4Q1t, + 160y + 8.

Substituting Py, Q1, O,, and P from equation (6.41) into equation (6.67), we obtain

1
W,ssy = 10wWw,, — 6w° — 18wt + 10ww§ — 20ww,t, + 12wt% +wz — tiw,, + ag + 7
(6.68)

Setting t; =0 ,w =V and ag + % = « into equation(6.68), we gives
VN — 10V — 10V(VY)2 + 6V5 = 2V + a,

the second member of P;; hierarchy. Therefore we have derived the Hamiltonian

structure for the second member of the P;; hierarchy.
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