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Abstract

Mixed distributions are widely used to model data in which each observation

is assumed to come from one of a number of different groups. In this thesis,

we investigate the Bayesian estimation for the finite exponential mixture

model using the Gibbs sampler as an important one of the MCMC methods.

Our approach in this thesis depends on using the Gibbs sampler to simulate

a Markov chain which has the posterior density as its long-run (stationary)

distribution. Then we use the resulting sample to make the suitable Bayesian

computations and draw conclusion about the unknown parameters of the

exponential mixture model. We conclude this thesis by presenting a real

data example to illustrates our methodology.
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Introduction

The main goal of this thesis is to use the Bayesian analysis to estimate the

finite mixture of exponential distributions.

In some times the simple exponential distribution becomes unsuitable to

model a data that contains a large amount of over dispersion. We face this

challenge by using the exponential mixture model to describe the inhomo-

geneity within the population.

Mixture models are good alternative candidates to model data when simple

models fail. In particular, finite mixture models can provide important infor-

mation about the number of subpopulations include the entire population.

The Markov Chain Monte Carlo (MCMC) methods is a collection of tools

that is one of the most important tools of the Bayesian statistical inference

and computational statistics. MCMC is a class of methods in which we can

simulate draws that are slightly dependent and are approximately from a

(posterior) distribution. We then take those draws and calculate quantities

of interest for the (posterior) distribution. In Bayesian statistics, there are

generally two MCMC algorithms that we use: the Gibbs Sampler and the

Metropolis-Hastings (M-H) algorithm.

The Gibbs sampler algorithm is one of the most basic Markov Chain Monte

Carlo Methods that is used in Bayesian Analysis. It’s used to draw sam-

ples from a distribution that is either hard to sample from or its probability

density function (pdf) is only known up to a normalizing constant. The

Gibbs sampler algorithm generates a Markov chain which has as its station-

ary distribution the posterior distribution by simulating observations from

a different proposed distribution. This simulation procedure enables us to

draw a sample from the posterior distribution that can be used in estimation

and other statistical inference.

The most widely used finite mixture distributions are those involving nor-

mal components. Medgyessi (1961) analyzes absorption spectra in terms of
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normal mixtures, to every theoretical ”line” belongs an intensity distribution

whose graph fits very well to that of some normal distributions, and also ap-

plies normal mixtures to the results of protein separation by electrophoresis.

Bhattacharya (1967) studies the length distribution of a certain type of fish

and finds it useful to split his observations into age categories, with each

category contributing a normal component distribution to yield an overall

mixture.

Clark et al. (1968) provides an illustration of an area in which mixture

distributions are being applied more frequently namely the study of disease

distributions.

This thesis is organized as follows:

Introduction

In the introduction, we briefly talk about mixture models and their im-

portance. We also talk about the importance of the natural exponential

mixtures in applications. Then we mention the approach we are going to

follow in making Bayesian inference about the exponential mixtures.

Chapter 1 Introduction to Bayesian Statistics

This chapter includes the following topics. Bayes theorem, expressing the

posterior probability density function in terms of the prior density and the

likelihood function, conjugate priors, and some related examples. Chapter

2 Finite Mixtures of Distributions

We give in this chapter an introduction to finite mixtures models. Then,

we present the finite exponential mixtures model using the missing data

formulation.

Chapter 3 MCMC methods in Bayesian Inference

In this chapter, we give a brief introduction on discrete-time Markov

chains and the Gibbs sampler and algorithm as one of the most basic Markov

Chain Monte Carlo (MCMC) methods in Bayesian analysis. We present the

algorithm used to generate samples.
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Chapter 4 Bayesian Analysis of Finite Exponential Mixtures

We use in this chapter the Gibbs sampler and algorithm to draw samples

from the posterior of the exponential mixtures in order to use them in the

Bayesian analysis. This can be done by using the R language. We use these

samples in the estimation of the unknown parameters of the model.
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Chapter 1

Introduction to Bayesian

Statistics

The possibilities are commonly used in our daily lives, we often use prob-

abilities informally to express our information and beliefs about unknown

quantities.

However, the use of probabilities to express information can be made formal:

In this chapter we will introduce a mathematical methods to find probability,

it can be shown that probabilities can numerically represent a set of rational

beliefs, that there is a relationship between probability and information, and

that Bayes rule provides a rational method for updating beliefs in light of

new information. The process of inductive learning via Bayes rule is referred

to as Bayesian inference.

1.1 Introduction

Bayesian statistics is based on the theorem first discovered by Reverend

Thomas Bayes and published after his death in the paper ” An Essay Towards

Solving a Problem in the Doctrine of Chances ” by his friend Richard Price.
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Bayes’ theorem combines the two sources of information about the unknown

parameter value: the prior density and the observed data. The prior density

gives our relative belief weights of every possible parameter value before we

observe the data. The likelihood function gives the relative weights to every

possible parameter value that comes from the observed data. Bayes’ theo-

rem combines these into the posterior density, which gives our relative belief

weights of the parameter value after observing the data. See [2]

In this section, we introduce the basics of bayesian statistics and we will

explain how bayesian statistic different with other non bayesian models. The

Frequentist and Bayesian approaches to statistics differ in the definition of

probability. For a Frequentist, probability is the relative frequency of the

occurrence of an event in a large set of repetitions of the experiment. In

Bayesian statistics, on the other hand, probability is not defined as a fre-

quency of occurrence but as the plausibility that a proposition is true, given

the available information. Bayesian statistical analysis is concerned with cal-

culating probability distributions of parameters in statistical models, where

this statistical model describes the relationship between the parameters and

the data in a mathematical model. Bayesian statistical analysis treats the

parameters as random variables. A non-Bayesian statistical analysis treats

parameters as fixed values without distribution. so we can summarize the

differs between bayesian inference and classical, frequentist inference in four

ways:

1. Frequentist inference estimates the probability of the data having oc-

curred given a particular hypothesis (P (Y |H)) whereas Bayesian infer-

ence provides a quantitative measure of the probability of a hypothesis

being true in light of the available data (P (H|Y ));

2. Their definitions of probability differ: frequentist inference defines prob-

ability in terms of infinite relative frequencies of events, whereas Bayesian

3



inference defines probability as a degree of belief in the likelihood of an

event.

3. Bayesian inference uses prior knowledge along with the sample data

whereas frequentist inference uses only the sample data;

4. Bayesian inference treats model parameters as random variables whereas

frequentist inference considers them to be estimates of fixed, true quan-

tities.

Components of bayesian statistical analysis:

• The prior distribution: which the probability of observing the param-

eter that is expected by the investigator before the experiment is con-

ducted.

• Likelihood distribution: based on modeling assumptions, how [rela-

tively] likely the data Y are if the truth is β, denoted f (Y |β)

• posterior distribution: stating what we know about the parameter β,

combining the prior with the data Y denoted P (θ|y)

Computational Bayesian Statistics

The main ideas of computational Bayesian statistics is finding the posterior

distribution using bayes theorm so, we will introduce some rules to explain

bayes theorm:

Definition 1.1.1. [9](Probability Axioms) Let S be the sample space of a

random phenomenon. Suppose that to each event A of S, a number denoted

by P (A) is associated with A. If P satisfies the following axioms, then it is

called a probability and the number P (A) is said to be the probability of

A.

Axiom 1 P (A) ≥ 0.
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Axiom 2 P (S) = 1.

Axiom 3 If {A1, A2, A3, ...} is a sequence of mutually exclusive events (i.e.,

the joint occurrence of every pair of them is impossible: Ai ∩ Aj = φ when

i 6= j), then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai)

Definition 1.1.2. [9](Conditional Probability). Let A and B be two

events with P (A) > 0 and P (B) > 0. Then the conditional probability of

A given B is:

P (A|B) =
P (A ∩B)

P (B)

Definition 1.1.3. [14](Partition) A collection of sets {H1, ..., Hk} is a par-

tition of another set H if

1. the events are disjoint, which we write as Hi ∩Hj = φ; for i 6= j;

2. the union of the sets is H, which we write as ∪ki=1Hi = H.

Partitions and probability

Suppose {H1, ..., Hk} is a partition of H, P (H) = 1, and E is some specific

event. The axioms of probability imply the following:

Rule of total probability:
∑k

i=1 P (Hi) =1

Rule of marginal probability:

P (E) =
k∑
i=1

P (E ∩Hi)

=
k∑
i=1

P (E|Hi)P (Hi)

Theorem 1.1.4. [9](Law of total probability) If {B1, B2, ..., Bn} is a

partition of the sample space S of an experiment and P (Bi) > 0 for i =

5



1, 2, ..., n, then for any event A of S,

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + ...+ P (A|Bn)P (Bn)

=
n∑
i=1

P (A|Bi)P (Bi)

More generally, let {B1, B2, ...} be a sequence of mutually exclusive events of

S such that
⋃∞
i=1 Bi = S. Suppose that, for all i ≥ 1, P (Bi) > 0. Then for

any event A of S,

P (A) =
∞∑
i=1

P (A|Bi)P (Bi)

Bayes rule for discrete random variables:

P (Hj|E) =
P (E|Hj)P (Hj)

P (E)

=
P (E|Hj)P (Hj)∑k
i=1 P (E|Hi)P (Hi)

provided P (E) > 0. In this expression of Bayes Theorem, P (H|E) is the

probability of H after obtaining E, and P (H) is the prior probability of H

before considering E. The conditional probability on the left-hand side of

the theorem, P (H|E), is usually referred to as the posterior probability of

H.

Bayes’ rule for continous random variables:

let the unknown parameter be θ, and denote the data available for analysis

as Y = (y1, y2, ..., yn). In the case of continuous parameters, beliefs about

the parameter are represented as probability density functions or pdfs; we

denote the prior pdf as P (θ) and the posterior pdf as P (θ|y).

Then, Bayes Theorem for a continuous parameter is as follows:

P (θ|Y ) =
P (Y |θ)P (θ)∫
P (Y |θ)P (θ)dθ

(1.1)

This distribution is called the posterior distribution. The denominator

of the above equation is called the normalizing constant. The Bayesian
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inference proceeds from the posterior distribution.

Let

z =

∫ ∞
−∞

P (Y |θ)P (θ)dθ

Equation (2.1) becomes:

posterior︷ ︸︸ ︷
P (θ|Y ) =

likelihood︷ ︸︸ ︷
P (Y |θ)

prior︷︸︸︷
P (θ)

z︸︷︷︸
normalizingconstant

(1.2)

∝ P (Y |θ)P (θ) (1.3)

in words:

posterior ∝ likelihood× prior

1.2 Likelihood Function

In statistics, a likelihood function (often simply the likelihood) is a function

of the parameters of a statistical model. Likelihood functions play a key role

in statistical inference, especially methods of estimating a parameter from a

set of statistics.

Definition 1.2.1. The likelihood of a set of parameter values, θ, given out-

comes x, is equal to the probability of those observed outcomes given those

parameter values, that is

L(θ|x) = P (x|θ)

The likelihood function is defined differently for discrete and continuous prob-

ability distributions.

The likelihood for discrete distribution

7



let X be a random variable with a discrete probability distribution p depend-

ing on a parameter θ. Then the function

L(θ|x) = Pθ(X = x)

considered as a function of θ, is called the likelihood function (of θ, given

the outcome x of X). Sometimes the probability on the value x of X for the

parameter value θ is written as P (X = x|θ); often written as P (X = x; θ)

to emphasize that this value is not a conditional probability, because θ is a

parameter and not a random variable.

The likelihood for continuous distribution

Let X be a random variable with a continuous probability distribution with

density function f depending on a parameter θ. Then the function

L(θ|x) = fθ(x),

considered as a function of θ, is called the likelihood function (of θ, given the

outcome x of X). Sometimes the density function for the value x of X for

the parameter value θ is written as f(x|θ), but should not be considered as

a conditional probability density.

Definition 1.2.2. The Joint Likelihood Function: The likelihood function of

the random sample is the product of the individual observation likelihoods.

Example 1.2.3. [2] Suppose y1, y2, ..., yn are a random sample from a normal

(µ, σ2) distribution where the variance σ2 is a known constant. For a random

sample, the joint likelihood is the product of the individual likelihoods, so it

8



is given by

f(y1, ..., yn|µ) = f(y1|µ)× f(y2|µ)× ...× f(yn|µ)

=
1

σ
√

2π
e−(y1−µ)2/2σ2 × ...× 1

σ
√

2π
e−(yn−µ)2/2σ2

∝
n∏
i=1

e−(yi−µ)2/2σ2

∝ e−
1

2σ2

∑
(yi−µ)2

Multiply out the terms in the exponent and collect like terms, and using the

rule that

ȳ =

∑
yi
n

=⇒
∑

yi = nȳ

n∑
i=1

(yi − µ)2 =
n∑
i=1

y2
i −

n∑
i=1

2µyi +
n∑
i=1

µ2

= nµ2 − 2µnȳ +
n∑
i=1

y2
i

Factor out n from the first terms and complete the square

n∑
i=1

(yi − µ)2 = n(µ2 − 2µȳ) +
n∑
i=1

y2
i

= n(µ− ȳ)2 − n(ȳ)2 +
n∑
i=1

y2
i

Put this back in the likelihood, and absorb the part that does not affect the

shape into the constant

f (y1, ..., yn|µ) ∝ e
− 1

2σ2/n (µ− ȳ)2 × e−
1

2σ2
[n(ȳ2)+

∑n
i=1 y

2
i ]

∝ e
− 1

2σ2/n
(µ−ȳ)2

We recognize this is the likelihood of y. It is a normal distribution with mean

µ and variance σ2
ȳ = σ2

n
. Thus the likelihood of the whole random sample

9



is proportional to the likelihood of ȳ, a single draw from a normal
(
µ, σ2

ȳ

)
,

where σ2
ȳ = σ2

n
.

Example 1.2.4. [10] Let X1, X2, ..., Xn be an iid exponential (θ).

Suppose the prior density is given by:

f(θ) = e−θ, θ > 0.

The likelihood density is:

f(x|θ) =
n∏
i=1

f(xi|θ)

=
n∏
i=1

(θe−θxi)

= (θe−θx1)(θe−θx2)...(θe−θxn)

= θ.θ.....θ︸ ︷︷ ︸
n−times

(e−θx1 .e−θx2 .....e−θxn)

= θne−θ
∑n
i=1 xi

The posterior density is:

f(θ|x) ∝ f(x|θ)f(θ)

= θne−θ
∑n
i=1 xi .e−θ

= θne−θ(1+
∑n
i=1 xi)

Clearly, this is the density of gamma distribution with parameters n+ 1 and

1 +
∑n

i=1 xi.

So,

(θ|x) ∼ gamma(n+ 1, 1 +
n∑
i=1

xi).

10



Table 1. Notation for common pdf’s and pmf’s

Table 1.1: pdf,s or pmf

Name pdf or pmf parameter(s)

Beta Be(α, β) = 1
beta(α,β)

θα−1(1− θ)β−1, α > 0,

x ∈ (0, 1). β > 0.

Binomial Bi(x|n, θ) =

(
n

x

)
θx(1− θ)n−x, n ∈ {1, 2, ...},

x ∈ {0, 1, ..., n}. θ ∈ (0, 1).

Exponential Ex(x|θ) = θe−θx, x>0 θ > 0.

Gamma Ga(x|α, β) = βα

Γ(α)
xα−1e−βx, x>0 α > 0,

β > 0.

NegBinomial Nb(x|r, θ) =

(
r + x− 1

r − 1

)
θr(1− θ)x, r ∈ {1, 2, ...},

x ∈ {1, 2, ...}. θ ∈ (0, 1).

Normal N(x|µ, σ) = 1
σ
√

2π
e−

(x−µ)2

2σ2 , x ∈ R. µ ∈ R,
σ > 0.

Poisson Pn(x|λ) = 1
x!
e−λλx, x ∈ {0, 1, ..., n} λ > 0.

Inverse Gamma IGa(x|α, β) = Γ(α)
βα

1
xα−1 e

−β
x , x>0 α > 0,

β > 0.
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1.3 Prior Distribution

In Bayesian statistical inference, a prior probability distribution, often called

simply the prior, of an uncertain quantity is the probability distribution

that would express one’s beliefs about this quantity before some evidence is

taken into account. f(θ) is the prior probability of obtaining the specified

parameter. In other words, P (θ) is the probability of observing θ that is

expected by the investigator befor the experiment is conducted, a prior can

be the purely subjective assessment of an experienced expert. See[36]

In Bayesian probability theory, if the posterior distributions p(θ|x) are

in the same family as the prior probability distribution p(θ), the prior and

posterior are then called conjugate distributions, and the prior is called a

conjugate prior for the likelihood function. When a family of conjugate

priors exists, choosing a prior from that family simplifies calculation of the

posterior distribution, so we will introduce the definition of conjugete prior.

See[38]

Definition 1.3.1. [38] Suppose a prior density p(θ) belongs to a class of

parametric of densities, F . Then the prior density is said to be conjugate

with respect to a likelihood p(y|θ) if the posterior density p(θ|y) is also in F .

The conjugate family. The conjugate family of priors for a member of the

one-dimensional exponential family of densities has the same form as the

likelihood. It is given by

g(θ) ∝ A(θ)keC(θ)×l (1.4)

where k and l are the constants that determine its shape. See[2]

The following table conclude some distributions and their conjugate prior.
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Table 1.2: conjugate prior for some distribution

Likelihood Model parameters Conjugate prior distribution Prior parameters

Binomial p (probability) Beta α , β

Poisson λ (rate) Gamma K , θ

Geometric p (probability) Beta α , β

Negative binomial p (probability) Beta α , β

Exponential λ (rate) Gamma α , β

Gamma β (rate) Gamma α , β

Example 1.3.2. Conjugate prior for exponential(λ) is gamma(α, β).

The conjugate prior for λ will have the same form as the likelihood. we will

chooseA(λ), C(λ) in 1.4 as follow

A(λ) = λ, C(λ) = −λ
Thus its shape is given by

g(λ) ∝ λke−λl

We recognize this to be the gamma(α, β) distribution which has exact density

given by

g(λ) =
λα−1βα

Γ(α)
e−βλ,

where α− 1 = k and β = l.

1.4 Posterior Probability

In some cases we have a formula for the exact posterior. In other cases we

only know the shape of the posterior using Bayes’ theorem. The posterior is

proportional to prior times likelihood. In those cases we can find the posterior

density numerically by dividing through by the scale factor needed to make

the integral of the posterior over its whole range of values equal to one. This

scale factor is found by integrating the prior times likelihood over the whole

13



range of parameter values. Thus the posterior is given by

g(θ|y1, y2, ..., yn) =
P (y1, y2, ..., yn|θ)P (θ)∫
P (y1, y2, ..., yn|θ)P (θ)dθ

(1.5)

Definition 1.4.1. The posterior probability is the probability of the param-

eter θ given the evidence X : p(θ|X).

It contrasts with the likelihood function, which is the probability of the

evidence given the parameters: p(X|θ).
The two are related as follows:

Let us have a prior belief that the probability distribution function is p(θ)

and observations x with the likelihood p(x|θ), then the posterior probability

is defined as

P (θ|x) =
P (x|θ)P (θ)

P (x)

The posterior probability can be written in the memorable form as

Posterior probability ∝ Likelihood × Prior probability

Example 1.4.2. (continued) If t is the waiting time from the exponential(λ)

distribution and we use the gamma(α, β) prior distribution for λ as in exam-

ple (2.3.2), the shape of the posterior is given by:

Posterior ∝ Likelihood× Prior

g(λ|t) ∝ λα−1βα

Γ(α)
e−βλ × λe−λt

∝ λα−1+1e−(β+t)λ

∝ λὰ−1eβ̀λ

where the constants are updated by ὰ = α + 1 and β̀ = β+ t. We recognize

this to be the gamma (ὰ,β̀ ) distribution.
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Example 1.4.3. [10] Let X1, X2, ..., Xn be an i.i.d sample from the expo-

nential distribution with density

f(x|λ) = λe−λx, x > 0, λ > 0.

Suppose the prior density for is given by:

f(λ) = µe−µλ, λ > 0, for some known µ > 0.

The likelihood density is:

f(x|λ) =
n∏
i=1

f(xi|λ)

=
n∏
i=1

(λe−λxi)

= (λe−λx1)(λe−λx2)...(λe−λxn)

= λ.λ.....λ︸ ︷︷ ︸
n−copies

e−λx1−λx2−...−λxn

= λne−λ(x1+x2+...+xn)

= λne−λ
∑n
i=1 xi

Therefore,

f(x|λ) = λne−λ
∑n
i=1 xi

The posterior density is:

f(λ|x) ∝ f(x|λ)f(λ)

= λne−λ
∑n
i=1 xiµe−µλ

= µλne−µλ−λ
∑n
i=1 xi

= µλne−(µ+
∑n
i=1 xi)λ

We do not write the term µ which does not involve λ.

The posterior density becomes:

f(λ|x) ∝ λne−(µ+
∑n
i=1 xi)λ

15



Clearly this is the density of a gamma distribution with parameters:

n+ 1 and

n∑
i=1

xi + µ

Therefore,

f(λ|x) = Ga(n+ 1,
n∑
i=1

xi + µ).

1.4.1 Main Points In Bayesian Analysis

• Bayesian statistics does inference using the rules of probability directly.

• Bayesian statistics based on Bayes theorem which is the basic tool we

use it to find posterior distribution of parameters, and this theorem find

the posterior by the combining with prior g(θ1, ..., θk) and likelihood

f(y1, ..., yn, θ1, ..., θk) as explained before.

• It is easy to find the missing posterior by posterior proportional to prior

times likelihood and in symbols:

g(θ1, ..., θk|y1, ..., yn) ∝ g(θ1, ..., θk)× f(y1, ..., yn, θ1, ..., θk)

and this posterior is not the exact posterior density, it must be divided

by its integral to make it exact.

• Evaluating the integral may be very difficult, particularly if there are

lots of parameters. It is hard to find the exact posterior except in a

few special cases.

• In view of the previous two points, then if two experiments have propor-

tional likelihoods, then they should lead to the same inference. See[2]
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Chapter 2

Finite Mixtures of

Distributions

2.1 Introduction to Finite Mixture Models

Finite mixture of distributions have a great importance in statistical model-

ing of a wide variety of random phenomena. In the past decade the extent

and the potential of the applications of finite mixture models have widened

considerably. Because of their flexibility mixture models are being increas-

ingly exploited as convenient way in which to model unknown distributional

shapes. The mixture models are useful when we need to divide the main

population into subpopulations. For example, the distribution of heights in

a population of adults reflects the mixture of males and females in the pop-

ulation. so in this case mixtures is best to model male and female heights

as separate univariate, perhaps normal, distributions, rather than a single

bimodel distribution. This make us to introduce the following definition.

Definition 2.1.1. Let F be a family of distribution functions. A random

variable X is said to have a finite mixture distribution if its distribution

function F satisfies

17



F (x) =
k∑
j=1

πjFj(x)

where the Fj ∈ F are the distinct distribution functions of the k mixture

components or populations, and the mixture proportions satisfy πj > 0,

j = 1, ..., k and
∑k

j=1 πj = 1,

but in this thesis we consider models in which data xn = x1, ..., xn, are

assumed to be independent observations from a mixture density with k (k

possibly unknown but finite) components:

p(x|π, φ, η) = π1f(x;φ1, η) + ...+ πkf(x;φk, η) (2.1)

where π = (π1, ..., πk) are the mixture proportions which are constrained to

be non-negative and sum to unity; φ = (φ1, ..., φk) are the (possibly vector)

component specific parameters, with φi being specific to component i; and η

is a (possibly vector) common parameter which is common to all components.

Throughout this thesis p(.|.) will be used to denote conditional densities and

distributions.

Remark 2.1.2. [31] The finite mixture represented by f(x) =
∑k

j=1 pjf(x|θj)
is said to be identifiable if we have two representations

f(x) =
k∑
j=1

pjf(x|θj) and f ∗(x) =
k∗∑
j=1

p∗jf(x|θ∗j ),

then f ≡ f ∗ if and only if k = k∗ and there exists a permutation π of the

indexes (1, . . . , k) such that pj = p∗πj and θj = θ∗πj .

2.1.1 Missing data

Mixture distributions are typical examples of missing data models. In mix-

ture model we divide data into subgroups and each subgroup of the data

18



is called cluster. In the case that the clusters are known, the problem of

estimating the parameters becomes so much simpler. It is convenient to in-

troduce the missing data formulation of the model, in which each observation

xj is assumed to arise from specific but unknown (that is missing) component

zj of the mixture. Here zn is multinomial random variable and

zkn =

1 if instance n is from component k ,

0 otherwise.

We will refer to the missing data zn = z1, ..., zn as allocation variables, and

to (xn, zn) as the completed data. the model 2.1 can be written in terms of

the missing data, with z1, ..., zn assumed to be relations of independent and

identically distributed discrete random variables Z1, ..., Zn with probability

mass function

P (Zj = i|π, φ, η) = πi, j = 1, ..., n; i = 1, ..., k

Conditional on the Zs, x1, ..., xn are assumed to be independent observations

from the densities

p(xj|Zj = i, π, φ, η) = f(xj;φi, η), j = 1, ..., n.

Integrating out the missing data Z1, ..., Zn then yields the model 2.1:

p(xj|π, φ, η) =
k∑
i=1

P (Zj = i|π, φ, η)p(xj|Zj = i, π, φ, η)

=
k∑
i=1

πjf(xj;φi, η).
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Now to show why we use missing data model:

Figure 2.1: Graphical models

Figure (a) represents the typical case when the population have the same

mean, but in Figure (b) the population is not homogenous so, we divide

it into subpopulations with different means, this case is a good model for

non-homogenous data, this type of models are called mixture models. Each

group of the data are called cluster ( In this case we have k = 3 clusters)

Now, if the mixture distributions πk are given and the necessary parameters

for each component θk, we can write the likelihood as

p(x, z|θ, π) =
∏
n

∑
k

zknp(xn|θk)πk (2.2)

where for each k, only one of the terms zkn is equal to 1 and the rest are zero.

We call this the complete data likelihood. The full computations of the

corresponding posterior distribution involves the expansion of the likelihood

p(x, z|θ, π) =
∏
n

∑
k

zknp(xn|θk)πk

into a sum of Kn terms, and this computationally too expensive to be used,

and this difficulty explain why we use the missing data model, so we introduce

the following example to explain the meaning:
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Example 2.1.3. In order to show how to derive the complete data likeli-

hood, we consider the following example. We consider data coming from two

clusters (K = 2) with four data points (N = 4). We denote the parameters

for clusters by λ1 and λ2. the data are assumed to come from exponential

distribution which has the following probability density function

p(x|λ) = λe−λx, 0 < x <∞

The data points and their clusters are given in the following table

xi K

1 2 1

2 7 2

3 3 1

4 9 2

The complete data likelihood equals

p(x, z|λ, π) =
∏
n

∑
k

zknp(xn|λk)πk

=
∏
n

∑
k

zkn(λke
−λkxn)πk

= (z1
1λ1e

−2λ1π1 + 0)(0 + z2
2λ2e

−7λ2π2)(z1
3λ1e

−3λ1π1 + 0)(0 + z2
4λ2e

−9λ2π2)

z1
1 = z2

2 = z1
3 = z2

4 = 1, z2
1 = z1

2 = z2
3 = z1

4 = 0

= (λ1e
−2λ1π1)(λ2e

−7λ2π2)(λ1e
−3λ1π1)(λ2e

−9λ2π2)

= (π1(λ1e
−x1λ1))1(π2(λ2e

−x1λ2))0(π1(λ1e
−x2λ1))0(π2(λ2e

−x2λ2))1

(π1(λ1e
−x3λ1))1(π2(λ2e

−x3λ2))0(π1(λ1e
−x4λ1))0(π2(λ2e

−x4λ2))1

=
n∏
i=1

k∏
j=1

zijpjf(xi|θj)

=
n∏
i=1

k∏
j=1

(pjf(xi|λj))zij
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Remark 2.1.4. The original definition of mixture distribution is given in equa-

tion 2.2, but after using the missing data formulation we invert the Kn terms

in the summation into one term when i = j, so we replace summation in 2.2

by the product over the values of K, so we get the new expression of the

definition of the mixture which given by:

f(x, z|λ, p) =
n∏
i=1

k∏
j=1

(pjf(xi|λj))zij (2.3)
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2.2 Exponential distribution

On of the most important continous distributions is the exponential distri-

bution, exponential distribution is important in the analysis of failure data,

where the probability density function of failure time can be approximated

by :

f(x) =
1

µ
exp(
−x
µ

), x ≥ 0;µ > 0

Thus, exponential distribution can be used in the following:

• The mean time between failures of a machine in a factory.

• The length of time one can expect a complex system to function without

failing.

• The probability density function for the times of scores in game may

be exponentially distributed.

• The interarrival time between two customers at a post office

• The time between two accidents at an intersection

• The time until the next baby is born in a hospital

• The time interval between the observation of two consecutive shooting

stars on a summer evening

• The time between two consecutive fish caught by a fisherman from a

large lake with lots of fish. See[9]

Definition 2.2.1. [6] A continuous random variableX is called exponential

with parameter λ > 0 if its density function is given by:

f(t) =

λe−λt if t ≥ 0 ,

0 if t < 0.
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and for all n ≥ 1 :

P (Xn ≤ t) = F (t)

1− e−λt if t ≥ 0 ,

0 if t < 0.

Remark 2.2.2. In the exponential distribution λ is the average number of the

events in one time unit.

let X be an exponential random variable with parameter λ then:

E(X) =

∫ ∞
−∞

xf(x)d(x) =

∫ ∞
0

x(λe−xλ)d(x) =
1

λ

E(X2) =

∫ ∞
−∞

x2f(x)d(x) =

∫ ∞
0

x2(λe−xλ)d(x) =
2

λ2

V ar(X) = E(X2)− [E(X)]2 =
2

λ2
− 1

λ2
=

1

λ2

Example 2.2.3. [9] Suppose that every three months , on average, an earth-

quake occurs in California. What is the probability that the next earthquake

occurs after three but before seven months?

Solution: Let X be the time (in months) until the next earthquake; it can

be assumed that X is an exponential random variable with 1
λ

= 3 or λ = 1
3
.

Now, to calculate P (3 < X < 7), note that since F the distribution function

of X, is given by:

F (T ) = P (X ≤ t) = 1− e−t/3, fort > 0

We can write

P (3 < X < 7) = F (7) - F (3) = (1− e−7/3) - (1− e−1) ≈ 0.27

Memory property:[6] It is traditional to formulate this property in terms

of waiting for an unreliable bus driver. In words, if weve been waiting for t

units of time then the probability we must wait s more units of time is the

same as if we havent waited at all. In symbols

P (X > s+ t|X > t) = P (X > s) (2.4)

24



An important property of exponential distribution is memoryless property,

to show that exponential distribution has this property recall that if B ⊂ A,

then P (B|A)=P (B)/P (A), so

P (X > s+ t|X > t) =
P (X > s+ t)

P (X > t)
=
e−λ(s+t)

e−λt
= e−λs = P (X > s) (2.5)

Example 2.2.4. [9] The lifetime of a TV tube (in years) is an exponential

random variable, with mean 10. If Jim bought his TV set 10 years ago, what

is the probability that its tube will last another 10 years? solution: let X be

the lifetime of the tube. Since X is an exponential random variable, there is

no deterioration with age of the tube. Hence

P (X > 20|X > 10) = P (X > 10) = 1− P (X ≤ 10) = 1− [1− e−(1/10)10] ≈
0.37

2.3 Finite Exponential Mixtures Model

One of the most important as a component of a mixture is the exponential

distribution, in this section we will present the finite exponential mixtures

model using the missing data formulation.

The general form of a finite exponential mixture is

f(x) =
k∑
i=1

πi
1

µi
exp(
−x
µi

), x ≥ 0

= 0 otherwise
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Chapter 3

MCMC Methods in Bayesian

Inference

In this chapter, we will introduce the definition of the discrete-time Markov

chains and the Gibbs sampler and algorithm as one of the most basic Markov

Chain Monte Carlo (MCMC) methods in Bayesian analysis. We present the

algorithm used to generate samples.

3.1 Markov Chains

In this section we will introduce the definition of discrete-time Markov chains

and some examples which explain the meaning. We will discuss some basic

properties of a Markov chain, basic concepts and notations. Some important

theorems will be discussed also.

A Markov chain is a stochastic process with finite state space and Markov

property which refers to the memoryless property of a stochastic process.

A stochastic process has the Markov property if the conditional probability

distribution of future states of the process depends only upon the present

state, not on the sequence of events that preceded it. A process with this
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property is called a Markov process.

Suppose that the random variables X0, X1, ..., Xn represent the outcomes of

some random experiment, and a finite Markov chain is a process which moves

among the elements of a finite set S, where S is a state space for this system

which contains the outcomes, so S = {x0, x1, ..., xn}.
We denote by p(i, j) the probability of moving from the state i to the state

j in one step.

Example 3.1.1. [11] Let us begin with a simple example. We consider

a random walker in a very small town consisting of four streets, and four

street-corners v1, v2, v3, and v4 arranged as in Figure 3.1.1. At time 0, the

random walker stands in corner v1. At time 1, he flips a fair coin and moves

immediately to v2 or v4 according to whether the coin comes up heads or

tails. At time 2, he flips the coin again to decide which of the two adjacent

corners to move to, with the decision rule that if the coin comes up heads,

then he moves one step clockwise in Figure 3.1.1, while if it comes up tails,

he moves one step counterclockwise. This procedure is then iterated at times

3, 4, . . . .

For each n, let Xn denote the index of the street-corner at which the walker

stands at time n. Hence, (X0, X1, ...) is a random process taking values in

{1, 2, 3, 4}. Since the walker starts at time 0 in v1, we have,

P (X0 = 1) = 1. (3.1)

Next, he will move to v2 or v4 with probability 1/2 each, so that

P (X1 = 2) = 1/2 (3.2)

and,

P (X1 = 4) = 1/2. (3.3)
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Figure 3.1: A random walker in a very small town.

To compute the distribution of Xn for n ≥ 2, Suppose that at time n, the

walker stands at, say, v2. Then we get the conditional probabilities

P (Xn+1 = v1|Xn = v2) = 1/2

and,

P (Xn+1 = v3|Xn = v2) = 1/2,

because of the coin-flipping mechanism for deciding where to go next. In

fact, we get the same conditional probabilities of the process up to time n,

i.e.,

P (Xn+1 = v1|X0 = i0, X1 = i1, ..., Xn−1 = in−1, Xn = v2) = 1/2

and

P (Xn+1 = v3|X0 = i0, X1 = i1, ..., Xn−1 = in−1, Xn = v2) = 1/2

for any choice of i0, ..., in−1. (This is because the coin flip at time n+1 is inde-

pendent of all previous coin flips, and hence also independent of X0, ..., Xn.)

This phenomenon is called the memoryless property, also known as the

Markov property: the conditional distribution of Xn+1 given (X0, ..., Xn)

depends only on Xn.
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Remark 3.1.2. The conditional distribution of Xn+1 given that Xn = v2 (say)

is the same for all n. (This is because the mechanism that the walker uses

to decide where to go next is the same at all times.), and this property is

known as time homogeneity, or simply homogeneity.

We introduce this example for a general definition:

Definition 3.1.3. [9] A stochastic process {Xn : n = 1, 2, ...} with finite

or countably infinite state space S is said to be Markov chain, if for all

i, j, i0, ..., in−1 ∈ S, and n = 0, 1, 2, ...,

P (Xn+1 = j|Xn = i,Xn−1 = in−1, ..., X0 = i0) = P (Xn+1 = j|Xn = i).

(3.4)

Remarks 3.1.4. • The elements of the state space S are not necessarily

nonnegative integers (or numbers). But it is common to label the

elements of S by nonnegative integers.

• If S is finite, the Markov chain is called a finite Markov chain or a

finite-state Markov chain.

• If S is infinite, it is called an infinite Markov chain or an infinite-state Markov chain.

• The main property of a Markov chain, expressed by 3.4, is called

the Markov property of the Markov chain. Thus, by the Markov

property,

Given the state of the Markov chain at present (Xn) its future state

(Xn+1) is independent of the past states (Xn−1, ..., X1, X0).

Examples of Markov chains

We consider a stochastic process {Xn : n = 0, 1, 2, ...} that takes on a finite

or countable set M , and an element of M called state.
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Example 3.1.5. Let Xn be the weather of the nth day which can be

M = {sunny, windy, rainy, cloudy}

Then, perhaps we have the following case:

X0 = sunny,X1 = windy,X2 = rainy,X3 = sunny,X4 = cloudy, ...

Example 3.1.6. Let Xn be the product sales on the nth day which can be

M = {0, 1, 2, ...}

Then, perhaps we have the following case:

X0 = 0, X1 = 5, X2 = 2, X3 = 0, X4 = 5, ...

Definition 3.1.7. [4] If Pij represents the probability that the process will

make a transition to state i given that currently the process is state j,then

the matrix Pij, the transition probabilities
P00 P01 . . .

P10 P11 . . .
...

...
...


is called the one-step transition probability matrix of the process.

And the entries of the transition probability matrix satisfy the following

properties:

Pij ≥ 0,
∞∑
i=0

Pij = 1, ∀j = 0, 1, ...

Example 3.1.8. (Revisited) In Example 3.1.1 {Xn : n = 0, 1, ...} is a

Markov chain with state space {1, 2, 3, 4} and transition matrix

P =


0 1

2
0 1

2
1
2

0 1
2

0

0 1
2

0 1
2

1
2

0 1
2

0


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And satisfies

Pij ≥ 0 ∀i, j ∈ {1, 2, 3, 4}

and
∞∑
i=0

Pij = 1 ∀j ∈ {0, 1, ...} (3.5)

Property 3.5 is that they sum to 1 i.e.,

P (Xn+1 = 1|Xn = i) + P (Xn+1 = 2|Xn = i) + P (Xn+1 = 3|Xn = i)

+ P (Xn+1 = 4|Xn = i) = 1

For i = 1,

P (Xn+1 = 1|Xn = 1) + P (Xn+1 = 2|Xn = 1) + P (Xn+1 = 3|Xn = 1)

+ P (Xn+1 = 4|Xn = 1) = P11 + P12 + P13 + P14

= 0 +
1

2
+ 0 +

1

2
= 1.

Example 3.1.9. In a town there are tow supermarkets only, namely Well-

come and Park,n. A marketing research indicated that a consumer of Well-

come may switch to Park,n in his/her next shopping with a probability of

(α > 0), while a consumer of Park,n may switch to Wellcome in his/her

next shopping with a probability of (β > 0). Let Xn be a 2-state process

(taking values of {0, 1}) describing the behaviour of consumer. We have Xn

= 0 if the consumer shops with Wellcome on the nth day and Xn = 1 if the

consumer shops with Park,n on the nth day. Since the future state (which

supermarket to shop in the next time) depends on the current state only, it is

a Markov chain process. It is easy to check that the transition probabilities

are

P00 = 1− α, P10 = α, P11 = 1− β, P01 = β,

Then the one-step transition matrix of this process is given by(
1− α β

α 1− β

)
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Example 3.1.10. [9] In an intersection, a working traffic light will be out

of order the next day with probability 0.07, and an out-of-order traffic light

will be working the next day with probability 0.88. Let Xn = 1 if on the day

n the traffic light is working; Xn = 0 if the traffic light is not working. then,

{Xn : n = 0, 1, 2, ...} is a Markov chain with state space {0, 1}.
Now, we can see that P00 = 1 − .88 = 0.12, P01 = 0.88, P10 = 0.07, P11 =

1− 0.07 = 0.93, so, the transition probability matrix is(
0.12 0.88

0.07 0.93

)

Example 3.1.11. [6] (Brand preference). Suppose there are three types

of laundry detergent, 1, 2, and 3, and let Xn be the brand chosen on the

nth purchase. Customers who try these brands are satisfied and choose the

same thing again with probabilities 0.8, 0.6, and 0.4 respectively. When they

change they pick one of the other two brands at random. The transition

probability is


1 2 3

1 0.8 0.1 0.1

2 0.2 0.6 0.2

3 0.3 0.3 0.4


Example 3.1.12. (Random Walk)[4] Consider a person who performs a

random walk on the real line with the counting numbers

Then, let {...,−2,−1, 0, 1, 2, ...} be the state space, see Fig. 3.2. Each time

the person at state i can move one step forward (+1) or one step backward

(−1) with probabilities p(0 < p < 1) and (1− p) respectively. Therefore we
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Figure 3.2: The random walk

have the transition probabilities

Pij =


p if j=i+1 ,

1− p if j=i-1,

0 otherwise

If N = 3, where the states are 0,1,2,3 and p = .3, 1 − p = .7, then if we

consider P00 = P33 = 1, the transition matrix will be:
1 0 0 0

.7 0 .3 0

0 .7 0 .3

0 0 0 1


3.1.1 The nth Step Transition Matrix

In the previous section, we have defined the one-step transition probability

matrix P for Markov chain process. In this section, we are going to investigate

the n-step transition probability P
(n)
ij of a Markov chain process.

Definition 3.1.13. Define P
(n)
ij to be the probability that a process in state

j will be in state i after n additional transitions. In particular P
(1)
ij = Pij .

Remarks 3.1.14. • P (0) is the identity matrix, that is, p0
ij = 1 if i = j,

and p0
ij = 0 if i 6= j.
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• Also, P (1) = P , the transition probability matrix of Markov chain.

Theorem 3.1.15. [9] (Chapman-Kolmogorov equation). ∀i, j ∈ S = {x0, x1, ...},
we have that

Pm+n
ij =

∑
k∈S

Pm
ik P

n
kj. (3.6)

Proof. If we want to go from i to j in m + n steps, we will go from i to k

in m steps and from k to j in n steps, and these tow steps are independent

because of Markov property.

Now,

Pm+n
ij = P (Xm+n = j|X0 = i)

=
∑
k∈S

P (Xm+n = j,Xm = k|X0 = i)

=
∑
k∈S

P (Xm+n = j,Xm = k,X0 = i)

P (X0 = i)
(by definition of conditional probability)

=
∑
k∈S

P (Xm+n = j,Xm = k,X0 = i)

P (X0 = i)

P (Xm = k,X0 = i)

P (Xm = k,X0 = i)

=
∑
k∈S

P (Xm+n = j,Xm = k,X0 = i)

P (Xm = k,X0 = i)

P (Xm = k,X0 = i)

P (X0 = i)

=
∑
k∈S

P (Xm+n = j|Xm = k,X0 = i).P (Xm = k|X0 = i)

=
∑
k∈S

P (Xm+n = j|Xm = k).P (Xm = k|X0 = i)

=
∑
k∈S

P n
kjP

m
ik

Note that in 3.7, P n+m
ij is the ij th entry of the matrix P (n+m), P ik

n is the

ik th entry of the matrix P (n), and Pm
kj is the kj th entry of the matrix

P (m). As we know, from the definition of the product of two matrices, the

defining relation for the ij th entry of the product of matrices P (n) and P (m)

is identical to 3.7. Hence the Chapman- Kolmogorov equations, in matrix
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form, are

P (n+m) = P (n)P (m)

,

Proposition 3.1.16. P (n) = (P )n, that is to say that the n-step transition

probability matrix is equal to one step transition probability matrix raised to

power of n.

Proof. we will prove this proposition by using mathematical induction. when

n=1, its clear that the proposition is true. Then, we assume that the propo-

sition is true for n, i.e.,

P (n) = (P )n = P × P × ....× P︸ ︷︷ ︸
n−times

Then, we want to prove the truth of the proposition for n+1, the key in

proving this is Chapman-Kolmogorov equation.

Pm+n
ij =

∑
k∈S

Pm
ik P

n
kj (3.7)

taking m = n, n = 1 in 3.7, we see that

P n+1
ij =

∑
k∈S

P n
ikP

1
kj

= [Pij]
n+1

Example 3.1.17. For the Markov chain of Example 3.1.10, the tow step

transition probability matrix is given by:

P(2) = P2 =

(
0.12 0.88

0.07 0.93

)(
0.12 0.88

0.07 0.93

)
=

(
0.076 0.924

0.0735 0.9265

)
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P 2
01: denote the probability that an out of order traffic light will be working

the day after tomorrow, and this probability is equal to 0.924.

Simillarly, P 2
10 denote the probability that a working traffic light will be out

of order the day after tomorrow, which has the probability 0.0735.

Remark 3.1.18. In general, P n
ij 6= (Pij)

n, because that (P10)2 = (0.07)2 =

0.0049 not equal to (P 2
10) = 0.0735.

Theorem 3.1.19. Let {Xn : n = 0, 1, ...} be a Markov chain with transition

probability matrix P = (pij). For i ≥ 0, let p(i) = P (X0 = i) be the probabil-

ity mass function of X0. Then the probability mass function of Xn is given

by

P (Xn = j) =
∞∑
i=0

P (i)P n
ij, j = 0, 1, 2, ...

Proof. Applying the law of total probability, Theorem 1.1.4, to the sequence

of mutually exclusive events {X0 = i}, i ≥ 0, we have

P (Xn = j) =
∞∑
i=0

P (Xn = j|X0 = i)P (X0 = i)

=
∞∑
i=0

P n
ijP (i) =

∞∑
i=0

P (i)P n
ij

Example 3.1.20. [9] Suppose that a mouse is moving inside the maze shown

in Figure 3.1.20, from one cell to another, in search of food. When at a cell,

the mouse will move to one of the adjoining cells randomly. For n ≥ 0, let Xn

be the cell number the mouse will visit after having changed cells n times.

Then {Xn : n = 0, 1, ...} is a Markov chain with state space {1, 2, ..., 9} and

transition probability matrix
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

0 1
2

0 1
2

0 0 0 0 0
1
3

0 1
3

0 1
3

0 0 0 0

0 1
2

0 1
2

0 0 0 0 0
1
3

0 0 0 1
3

0 1
3

0 0

0 1
4

0 1
4

0 1
4

0 1
4

0

0 0 1
3

0 1
3

0 0 0 1
3

0 0 0 1
2

0 0 0 1
2

0

0 0 0 0 1
3

0 1
3

0 1
3

0 0 0 0 0 1
2

0 1
2

0



Figure 3.3: The moving mouse

Direct calculations show that the 5-step transition probability matrix for

this Markov chain, is given by
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

0 5
18

0 5
18

0 2
9

0 2
9

0
5
27

0 5
27

0 1
3

0 4
27

0 4
27

0 5
18

0 2
9

0 5
18

0 2
9

0
5
27

0 4
27

0 1
3

0 5
27

0 4
27

0 1
4

0 1
4

0 1
4

0 1
4

0
4
27

0 5
27

0 1
3

0 4
27

0 5
27

0 2
9

0 5
18

0 2
9

0 5
18

0
4
27

0 4
27

0 1
3

0 5
27

0 5
27

0 2
9

0 2
9

0 5
18

0 5
18

0


This matrix shows that, for example, if the mouse is in cell 4 at a certain

time, then after changing cells five times, the mouse will be in cell 5 with

probability 1/3, in cell 7 with probability 5/27, and in cell 9 with probability

4/27.

Note that initially, it is equally likely that the mouse is in any of the 9 cells.

That is,

P (i) = P (x0 = i) =
1

9
1 ≤ i ≤ 9

Then, using the matrix P 5 and Theorem 3.1.19, we can readily find the

probability that the mouse is in cell j, 1 ≤ j ≤ 9, after 5 transitions. For

example,

P (X5 = 4) =
9∑
i=1

P (i)P 5
i4 =

1

9

9∑
i=1

P 5
i4

=
1

9
(

5

18
+ 0 +

2

9
+ 0 +

1

4
+ 0 +

5

18
+ 0 +

2

9
) = 0.139

3.1.2 Absorbing Markov Chains

There is many special types of Markov chains. The first type that we shall

study is called an absorbing Markov chain.
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Definition 3.1.21. [34] A state xi of a Markov chain is called absorbing if

it is impossible to leave it (i.e., Pii = 1). A Markov chain is absorbing if it

has at least one absorbing state, and if from every state it is possible to go

to an absorbing state (not necessarily in one step).

Definition 3.1.22. In an absorbing Markov chain, a state which is not

absorbing is called transient.

Example 3.1.23. Drunkard’s Walk

0 1 2 3 4

Figure 3.4: Drunkard’s walk

A man walks along a four-block stretch of Park Avenue (see Figure

3.1.23). If he is at corner 1, 2, or 3, then he walks to the left or right

with equal probability. He continues until he reaches corner 4, which is a

bar, or corner 0, which is his home. If he reaches either home or the bar, he

stays there. We form a Markov chain with states 0, 1, 2, 3, and 4. States

0 and 4 are absorbing states,since the man will stay in these states. The

transition matrix is then 

1 0 0 0 0
1
2

0 1
2

0 0

0 1
2

0 1
2

0

0 0 1
2

0 1
2

0 0 0 0 1


The states 1, 2, and 3 are transient states, and from any of these it is possible

to reach the absorbing states 0 and 4. Hence the chain is an absorbing chain.

When a process reaches an absorbing state, we say that it is absorbed.
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Example 3.1.24. Consider a Markov chain with transition probability ma-

trix 

0 2
7

0 5
7

0
5
6

0 1
6

0 0

0 0 0 2
5

3
5

0 0 1
2

0 1
2

0 0 0 0 1



0 1 2 3 4

Figure 3.5: Transition graph of Example 3.1.24

Figure 3.1.24 is a transition graph for this Markov chain. It shows that

states 0 and 1 communicate. So, they belong to the same class. State 2 is

accessible from 1, but not vice versa. So 2 does not belong to the class of

0 and 1. States 3 and 2 communicate. Therefore, 3 does not belong to the

class of 0 and 1 either. States 2 and 3 belong to the same class. State 4 is

accessible from states 0, 1, 2, and 3, but no state is accessible from 4. So 4

belongs to a class by itself. Thus this Markov chain consists of three classes:

{0, 1}, {2, 3}, and {4}. In this example, note that, for state 4, P44 = 1. That

is, once the process enters 4, it will stay there forever. Such states are called

absorbing. In general, state i of a Markov chain is absorbing if Pii = 1.

3.1.3 Irreducibility and Aperiodicity of Markov Chains

To express the definition of irreducible Markov chains, we will introduce the

meaning of communicate states.
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Let {Xn : n = 0, 1, ...} be a Markov chain with state space S and transition

probability matrix P . A state j is said to be accessible from state i if there is

a positive probability that, starting from i, the Markov chain will visit state

j after a finite number of transitions. If j is accessible from i, we write i→ j

. Therefore, i → j if for some n ≥ 0, P n
ij > 0. If i and j are accessible from

each other, then we say that i and j communicate and write i↔ j . Clearly,

communication is a relation on the state space of the Markov chain. We will

now show that this relation is an equivalence relation. That is, it is reflexive,

symmetric, and transitive

Reflexivity: For all i ∈ S, i↔ i since p0
ii = 1 > 0.

Symmetry : If i↔ j , then j ↔ i. This follows from the definition of i and

j being accessible from each other.

Transitivity : We want to show that if i ↔ j, and j ↔ k, then i ↔ k. To

show this, we firstly will see that i→ k. Now i→ j implies that there exists

n ≥ 0 such that P n
ij > 0; j → k implies that there exists m ≥ 0 such that

pmjk > 0. By the Chapman-Kolmogorov equations,

P n+m
ik =

∞∑
l=0

P n
ilP

m
lk ≥ P n

ijP
m
jk > 0

Similarly, we can see that k → i. so, i ↔ k. As we know, an equivalence

relation on a set divides that set into a collection of disjoint subsets, called

equivalence classes, or simply classes. For a Markov chain, the equivalence

relation defined by communication divides the state space into a collection

of disjoint classes, where each class contains all of those elements of the

state space that communicate with each other. Therefore, the states that

communicate with each other belong to the same class. If all of the states of

a Markov chain communicate with each other, then there is only one class.

In such a case, the Markov chain is called irreducible.

Definition 3.1.25. A Markov chain is called an irreducible chain if it is

possible to go from every state to every state (not necessarily in one move);
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i.e., each state is communicate with each other. Otherwise the chain is said

to be reducible.

Another way to express the definition would be to say that the chain is

irreducible if for any states si , sj ∈ S, where S is the state space, we can

find an n such that (P n
ij) > 0. An easy way to verify that a Markov chain is

irreducible is to look at its transition graph, and check that from each state

there is a sequence of arrows leading to any other state.

In many books, irreducible Markov chains are called ergodic.

Example 3.1.26. A reducible Markov chain. Consider a Markov chain

(X0, X1, ...) with state space S = {1, 2, 3, 4} and transition matrix
0.5 0.5 0 0

0.3 0.7 0 0

0 0 0.2 0.8

0 0 0.8 0.2


We note that if the chain starts in state 1 or state 2, then we will still in

states 1 and 2 forever.

Similarly, if we start in state 3 or state 4, then we can never leave the subset

{3, 4} of the state space. Hence, the chain is reducible.

Definition 3.1.27. A Markov chain is called a regular chain if some power

of the transition matrix has only positive elements.

In other words, for some n, it is possible to go from any state to any state

in exactly n steps. It is clear from this definition that every regular chain

is irreducible. On the other hand, an irreducible chain is not necessarily

regular, as the following examples show.

Example 3.1.28. Let the transition matrix of a Markov chain be defined

by (
0 1

1 0

)
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If we find the second transition matrix P 2, we note that

P 2 = (P )2 = (
0 1

1 0

)(
0 1

1 0

)
=

(
1 0

0 1

)
So, we can move from any state to any state by one step or two steps, so

this chain is irreducible. However, if n is odd, then it is not possible to move

from state 0 to state 0 in n steps, and if n is even, then it is not possible to

move from state 0 to state 1 in n steps, so the chain is not regular.

Period[9]

Let {Xn : n = 0, 1, ...} be a Markov chain with state space S and transition

probability matrix P = (pij). For i ∈ S, suppose that, starting from i, there

is only a positive probability to return to i after n1, n2, ... transitions. Then

pn1
ii > 0, P n2

ii > 0, . . . . However, P n
ii = 0 if n /∈ {n1, n2, ...}. Let d be the

greatest common divisor of n1, n2, . . . . Then d(i) is said to be the period

of i. The period d(i) of a state i ∈ S is defined as

d(i) = gcd{n ≥ 1 : P n
ii > 0}

In words, the period of i is the greatest common divisor of the set of times

that the chain can return to i , given that we start with X0 = i. If d(i) = 1,

then we say that the state i is aperiodic.

Definition 3.1.29. [11] A Markov chain is said to be aperiodic if all its

states are aperiodic. Otherwise the chain is said to be periodic.

Remark 3.1.30. The period is a class property ,that is,

if i↔ j, then i and j have the same period.

Example 3.1.31. Consider a Markov chain {Xn : n = 0, 1, ...} with state

space {0, 1, ...,m− 2,m− 1}. Clearly, the set of all integers n ≥ 1 for which

pn00 > 0 is {m, 2m, 3m, ...}. Since the greatest common divisor of this set is
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m, the period of 0 is m. Since this Markov chain is irreducible, there is one

class and so the period of any other state is also m.

Example 3.1.32. [18] (Random walk on the n-cycle) Let S = Zn ={0, 1, ..., n−
1}, the set of remainders modulo n.

Consider the transition matrix

Pjk =


1
2

if K ≡ j+1 (mod n),

1
2

if K ≡ j-1 (mod n),

0 otherwise

The associated Markov chain (Xt) is called random walk on the n-cycle, this

chain can be specified simply by words: at each step, a coin is tossed. If the

coin lands heads up, the walk moves one step clockwise. If the coin lands

tails up, the walk moves one step counterclockwise.

For n ≥ 1, random walk on the n-cycle is irreducible, since for each

i, j ∈ Zn, i↔ j.

Random walk on any even length cycle is periodic, since gcd{t : P t
x,x >

0} = 2. Random walk on any odd length cycle is aperiodic.

Definition 3.1.33. For a Markov chain {Xn : n = 0, 1, ...}, let fnii be the

probability that, starting from state i, the process will return to state i, for

the first time, after exactly n transitions. Let fi be the probability that,

starting from state i, the process will return to state i after a finite number

of transitions. So, it is clear that fi =
∑∞

n=1 f
n
ii . If fi = 1, then the state i

is called recurrent. State i is called transient if fi < 1that is, if starting

from i, there is a positive probability that the process does not return to i.

Remark 3.1.34. In an irreducible Markov chain, either all states are transient,

or all states are recurrent, since the transient and recurrent properties are

class properties, and the irreducible Markov chain has only one class. In a
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reducible Markov chain, the elements of each class are either all transient, or

they are all recurrent.

Definition 3.1.35. Let i be a recurrent state of a Markov chain. The state i

is called positive recurrent if the expected number of transitions between

two consecutive returns to i is finite. If a recurrent state i is not positive

recurrent, then it called null recurrent.

3.1.4 The Stationary Distribution of Markov chains

In this section we consider one of the most important subject in Markov

theory, we will see the behavior of Markov chain after long time of transitions.

Let us revisit Example 3.1.10 in which a working traffic light will be out of

order the next day with probability 0.07, and an out-of-order traffic light will

be working the next day with probability 0.88. Let Xn = 1, if on day n the

traffic light will work; Xn = 0, if on day n it will not work. We showed that

{Xn : n = 0, 1...} is a Markov chain with state space {0, 1} and transition

probability matrix

P =

(
0.12 0.88

0.07 0.93

)
Direct calculations show that

P (6) = P 6 =

(
0.0736842 0.926316

0.0736842 0.926316

)

This shows that, whether or not the traffic light is working today, the prob-

ability that it will be working after six day is 0.926316, and the probability

that it will be out of order is 0.0736842. For certain Markov chains, after a

large number of transitions, the probability of entering a specific state be-

comes independent of the initial state of the Markov chain. Mathematically,
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this means that for such Markov chains limn→∞ P
n
ij converges to a limit-

ing probability that is independent of the initial state i. For some Markov

chains, these limits either cannot exist or they do not converge to limiting

probabilities.

In general, it can be shown that for an irreducible, positive recurrent,

aperiodic Markov chain {Xn : n = 0, 1, ...} with state space {0, 1, ...} and

transition probability matrix P = (pij), limn→∞ p
n
ij exists and is independent

of i. The limit is denoted by πj, and
∑n

j=0 πj = 1. This can expressed by

symbols by:

lim
n→∞

P (Xn = j) = πj.

Since, by conditioning on Xn and law of total probability, we have

P (Xn+1 = j) =
∞∑
i=0

P (Xn+1 = j|Xn = i)P (Xn = i) =
∞∑
i=0

pijP (Xn = i),

as n→∞, we must have

πj =
∞∑
i=0

pijπi, j ≥ 0. (3.8)

This system of equations along with
∑∞

j=0 πj = 1 enable us to find the

limiting probabilities πj. Let

Π =


π0

π1

...


, and let P T be the transpose of the transition probability matrix P ; then

equation 3.1.4 in matrix form are

Π = P TΠ
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In particular, for a finite-state Markov chain with space {0, 1, ...}, this equa-

tion is 
π0

π1

...

πn

 =


p00 p10 . . . pn1

p01 p11 . . . pn1

...

p0n p1n . . . pnn




π0

π1

...

πn


If for a Markov chain, for each j ≥ 0, limn→∞ p

n
ij exists and is independent

of i, we say that the Markov chain is in equilibrium or steady state. The

limits pij = limn→∞ p
n
ij, j ≥ 0, are called the stationary probabilities.

Definition 3.1.36. [11] Let {X0, X1, ...} be a Markov chain with state space

{s1, ..., sk} and transition matrix P . A row vector π = (π1, ..., πk) is said to

be a stationary distribution for the Markov chain, if it satisfies

• πi ≥ 0 for i = 1, ..., k, and
∑k

i=1 πi = 1, and

• πP = π, meaning that
∑k

i=1 πiPij = πj for j = 1, ..., k.

Theorem 3.1.37. [9] Let {Xn : n = 0, 1, ...} be an irreducible, positive

recurrent, aperiodic Markov chain with state space {0, 1, ...} and transition

probability matrix P = (pij). Then, for each j ≥ 0, limn→∞ p
n
ij exists and is

independent of i. Let πj = limn→∞ p
n
ij, j ≥ 0 and π = (π0π1 . . .)

T .Wehave

(a) Π = P TΠ, and
∑∞

j=0 πj = 1. Furthermore, these equations determine

the stationary probabilities, π0, π1, ..., uniquely.

(b) πj is the long-run proportion of the number of transitions to state j ,

j ≥ 0.

(c) The expected number of transitions between two consecutive visits to state

j is 1/πj , j ≥ 0.
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Example 3.1.38. An engineer analyzing a series of digital signals generated

by a testing system observes that only 1 out of 15 highly distorted signals

follows a highly distorted signal, with no recognizable signal between, whereas

20 out of 23 recognizable signals follow recognizable signals, with no highly

distorted signal between. Given that only highly distorted signals are not

recognizable, find the fraction of signals that are highly distorted.

solution: For n ≥ 1, let Xn = 1, if the nth signal generated is highly

distorted; Xn = 0, if the nth signal generated is recognizable. Then {Xn :

n = 0, 1, ...} is a Markov chain with state space S = {0, 1} and transition

probability matrix

P =

(
20/23 3/23

14/15 1/15

)
Now, note that, the Marcov chain is irreducible, since Pij > 0 ∀i, j ∈ S,

positive recurrent because the expected number of transitions between two

consecutive returns to i is finite, and aperiodic. Let π0 be the fraction of

signals that are recognizable, and π1 be the fraction of signals that are highly

distorted. Then by Theorem 3.1.37, π0 and π1 satisfy(
π0

π1

)
=

(
20/23 14/15

3/23 1/15

)(
π0

π1

)
which gives the following system of equations:π0 = 20

23
π0 + 14

15
π1

π1 = 3
23
π0 + 1

15
π1

The first equation of the previous equations with π0 + π1 = 1, we have that

1− π1 =
20

23
(1− π1) +

14

15
π1

then, π1 −
20

23
π1 +

14

15
π1 =

3

23
Then, π1 ≈ 0.123, it yields that π0 ≈ 0.877. Therefor, approximately 12.3%

of the signals generated by the testing system are highly distorted.
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Definition 3.1.39. A stationary Markov chain with a transition matrix P

and stationary distribution π is called reversible, if for arbitrary n ≥ 0 and

x0, x1, ..., xn ∈ S,

P (X0 = x0, X1 = x1, ..., Xn = xn) = P (Xn = x0, Xn−1 = x1, ..., X0 = xn)

(3.9)

Definition 3.1.40. [11] Suppose a probability π on S satisfies

πiPij = πjPji ∀i, j ∈ S. (3.10)

The equation 3.10 the detailed balance equation. And π is said to be

reversible if it satisfies the detailed balance equation.

Example 3.1.41. [6] (Revisited) In Example 3.1.11 Xn is a Markov chain

with a probability transition matrix

P =


0.8 0.1 0.1

0.2 0.6 0.2

0.3 0.3 0.4


Let Π= (π1, π2, π3) be the fraction of the three types of laundry detergent

1, 2, 3 respectively.

Then, equation πP = π yields that,

(π1, π2, π3)


0.8 0.1 0.1

0.2 0.6 0.2

0.3 0.3 0.4

 = (π1, π2, π3)

which gives the following system of equations:
0.8π1 + 0.2π2 + 0.3π3 = π1

0.1π1 + 0.6π2 + 0.3π3 = π2

0.1π1 + 0.2π2 + 0.4π3 = π3
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if we solve the previous equations with π1 + π2 + π3 = 1, we get that:

π1 =
6

11
, π2 =

3

11
, π3 =

2

11
.

Therefore the stationary distribution is given by:

π =

(
6

11
,

3

11
,

2

11

)
.

since,

π1P12 = π2P21 =
6

110

π1P13 = π3P31 =
6

110

π2P23 = π3P32 =
6

110

then the detailed balance equation (reversibility) holds.

Theorem 3.1.42. [18] Let P be the transition matrix of a Markov chain

with state space. Any distribution π satisfying the detailed balance equations

3.10 is stationary for P .

For the proof of this theorem and more details, you can see

But the converse of this theorem is not necessary true, and the following

example show this:

Example 3.1.43. Let Xn be a familys social class in the nth generation,

which we assume is either 1 = lower, 2 = middle, or 3 = upper. In our

simple version of sociology, changes of status are a Markov chain with the

following transition matrix

P =


0.7 0.2 0.1

0.3 0.5 0.2

0.2 0.4 0.4


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Let π = (pi1, π2, π3) be the fraction of the lower, middle, and upper social

class respectively. Then the equation πP = π, gives that:

(π1, π2, π3)


0.7 0.2 0.1

0.3 0.5 0.2

0.2 0.4 0.4

 = (π1, π2, π3)

So, we get the following system of equations:
0.7π1 + 0.3π2 + 0.2π3 = π1

0.2π1 + 0.5π2 + 0.4π3 = π2

0.1π1 + 0.2π2 + 0.4π3 = π3

Then, by solving these equations with π1 + π2 + π3 = 1, we get that, the

stationary distribution is given by:

π =

(
22

47
,
16

47
,

9

47

)
To check this we note that

(
22
47

16
47

9
47

)
0.7 0.2 0.1

0.3 0.5 0.2

0.2 0.4 0.4

 =
(

22
47

16
47

9
47

)
since

π1P12 =
22

47
.

2

10

=
44

470

and,

π2P21 =
16

47
.

3

10

=
48

470

then,

π1P12 6= π2P21

Therefore, the reversibility fails.
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3.2 Markov Chain Monto Carlo Methods (MCMC)

In this section, we will look at Markov chain Monte Carlo (MCMC) meth-

ods for generating samples from the posterior distribution. we construct a

Markov chain that has the posterior distribution as its stationary distribu-

tion. The Metropolis-Hastings (M-H) algorithm, Gibbs sampler are methods

of doing this.

3.2.1 Introduction to MCMC

In Bayesian statistics, we have two sources of information about the pa-

rameter θ: our prior belief and the observed data. The prior distribution

summarizes our belief about the parameter before we look at the data. The

prior density g(θ) gives the relative belief weights we have for all possible

values of the parameter θ before we look at the data, and all the information

about the parameter θ that is in the observed data y is contained in the

likelihood function f(y|θ). However, the parameter is considered a random

variable, so the likelihood function is written as a conditional distribution.

The likelihood function gives the relative support weight each possible value

of the parameter θ has from the observed data.

Bayes’ Theorem combines the two sources into a single relative belief weight

distribution after we have observed the data. The final belief weight distri-

bution is known as the posterior distribution and it takes into account both

the prior belief and the support from the data. Bayes’ Theorem express the

form of posterior to be proportional to prior times likelihood. In equation

form this is

g(θ|y) ∝ g(θ)× f(y|θ) (3.11)

This formula does not give the posterior density g(θ|y) exactly, but it does

give its shape, but the actual posterior density is found by scaling it so it
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integrates to one.

g(θ|y) =
g(θ)× f(y|θ)∫
g(θ)× f(y|θ)dθ

(3.12)

To find the actual posterior, this requires integrating∫
f(y|θ)g(θ)dθ

numerically, which may be very difficult. To do this, we draw a Monte Carlo

sample from the posterior. A Monte Carlo random sample from the posterior

will approximate the true posterior when the sample size is large enough.

The idea of the MCMC is the following: Suppose we can construct an irre-

ducible and aperiodic Markov chain (X0, X1, ...), whose (unique) stationary

distribution is π. If we run the chain with arbitrary initial distribution (for

instance, starting in a fixed state), then the Markov chain convergence the-

orem (Theorem 3.1.37) guarantees that the distribution of the chain at time

n converges to π, as n → ∞. Hence, if we run the chain for a sufficiently

long time n, then the distribution of Xn will be very close to π.

Thus, we will set the long-run distribution π(θ) for the Markov chain equal

to the posterior density g(θ|y). Generally we will only know the not exact

posterior density g(θ|y) ∝ g(θ) × f(y|θ). Fortunately, we will see that the

not exact posterior is all we need to know to find a Markov chain that has

the exact posterior as its long-run distribution.[2]

3.2.2 The Metropolis-Hastings Algorithm

This section will introduce one of the MCMC methods: the Metropolis-

Hastings algorithm, which goes back to Metropolis et al. (1953) and Hast-

ings (1970). The Metropolis-Hastings algorithm is based on proposing values

sampled from an instrumental distribution, which are then accepted with a

certain probability that reflects how likely it is that they are from the target

distribution f .
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The Metropolis-Hastings algorithm is the most popular example of the MCMC

methods. Suppose we have posterior distribution π, if we want to sample

from π, then we construct a Markov chain whose stationary distribution is

π, and run a Markov chain long enough and then use Metropolis-Hastings

algorithm.

Now, we show how the Metropolis-Hastings algorithm can be used to find a

Markov chain that has the posterior as its long-run distribution.

The algorithm proceeds as follows:

1. Select the proposal distribution q(x, y) that is easy to sample from.

2. Select starting point x = x0 ∼ q(x, y).

3. Generate candidate point x∗ ∼ q(x, x∗) and u ∼ uniform(0, 1).

4. Calculate the acceptance probability α, which is given by:

α = min

{
1,
π(x∗)q(x∗, x)

π(x)q(x, x∗)

}
5. We now either accept x∗ or reject it as follows

Xn+1 =

x∗ , if u ≤ α

xn , otherwise.

Repeat steps (3), (4), and (5), this generates a sequence of sample.

If the proposal distribution is symmetric,

q(x, y) = q(y, x)

we obtain the Metropolis algorithm. In this case the acceptance probability

α = min

{
1,
π(x∗)

π(x)

}
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Since a move is accepted with probability

α(x, y) = min

{
1,
π(x∗)q(x∗, x)

π(x)q(x, x∗)

}
so the transition probability

p(x, y) = q(x, y)α(x, y)

To check that π satisfies the detailed balance condition, we will introduce

this theorem

Theorem 3.2.1. The Metropolis algorithm produce a Markov chain {X0, X1, X2, ...},
which is reversible with respect to stationary distribution π(x).

Proof. Let the proposal distribution is q(x, y), and the acceptance probability

is α.

Set P (x, y) = q(x, y)α to construct the transition probabilities.

We must show that π(x)P (x, y) = π(y)P (y, x).

Obviously this holds if x = y. We will consider x 6= y, then

π(x)P (x, y) = π(x)q(x, y)α

= π(x)q(x, y) min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
= min

{
π(x)q(x, y), π(x)q(x, y)

π(y)q(y, x)

π(x)q(x, y)

}
= min {π(x)q(x, y), π(y)q(y, x)} (∗)

and,

π(y)P (y, x) = π(y)q(y, x)α

= π(y)q(y, x) min

{
1,
π(x)q(x, y)

π(y)q(y, x)

}
= min

{
π(y)q(y, x), π(y)q(y, x)

π(y)q(x, y)

π(y)q(y, x)

}
= min {π(y)q(y, x), π(x)q(x, y)} (∗∗)
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from (∗) and (∗∗) we obtain that

π(x)P (x, y) = π(y)P (y, x)

Therefore, the chain is reversible and satisfies the detailed balance condition

with respect to stationary distribution π(x).

This example explains the Metropolis algorithm manually:

Example 3.2.2. Write the Metropolis algorithm for obtaining samples from

the posterior distribution

π(θ) = g(θ|y) = 0.6e−
1
2
θ2 + 0.4× 1

2
e
− 1

2×22
(θ−3)2

Which is a mixture of normal (0, 12) and normal (3, 22), and this is only

the unscaled target since multiplying by a constant would multiply both the

numerator and denominator by the constant which would cancel out.

We will use the candidate (proposal) density with variance σ2 = 1 cen-

tered around the current value. Its shape is given by

q(θ, θ′) = e−
1
2

(θ′−θ)2

Let the starting value be θ = 2, since the candidate density is symmetric

about the current value, then q(θ, θ′) = q(θ′, θ), and the acceptance proba-

bility

α = min

{
1,
g(θ′|y)q(θ′, θ)

g(θ|y)q(θ, θ′)

}
So,

α = min

{
1,
g(θ′|y)

g(θ|y)

}
The Metropolis-Hastings algorithm proceeds as follow:

Let starting value θ0 = 2.
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Draw θ′ = 1.55 from q(θ(n−1), θ′) = q(θ(0), θ′) = q(2, θ′) = e−
1
2

(θ′−2)2 .

Calculate the probability α(2, θ′).

α(2, 1.55) = min

[
1,
g(θ′|x)

g(θ|x)

]
= min

[
1,
g(1.55|x)

g(2|x)

]
= min

[
1,

0.6× e− 1
2
×1.552 + 0.4× 1

2
e
− 1

2×22
(1.55−3)2

0.6× e− 1
2
×22 + 0.4× 1

2
× e−

1
2×22

(2−3)2

]
= min[1, 1.298]

= 1

Draw u = 0.354 from U(0, 1).

u < α(2, 1.55), so let θ(1) = 1.55.

Now, start with θ(1) = 1.55.

Draw θ′ = 2.692 from q(θ(n−1), θ′) = q(θ(1), θ′) = q(1.55, θ′) = e−
1
2

(θ′−1.55)2 .

Calculate α(1.55, 2.692) = min[1, g(1.55|x)
g(2.692|x)

]

α(1.55, 2.692) = min

[
1,

0.6× e− 1
2
×1.552 + 0.4× 1

2
e
− 1

2×22
(1.55−3)2

0.6× e− 1
2
×2.6922 + 0.4× 1

2
× e−

1
2×22

(2.692−3)2

]
= min[1, 1.5651]

= 1

We can continue this process, and record the values of current value of θ.

3.2.3 The Gibbs Sampler

The Gibbs sampler is one way of MCMC methods, which help us to generate

samples from joint (posterior) distributions. In this method, the samples

do not generate directly from the joint (posterior) distribution, but generate

from the conditional distributions derived from the joint (posterior) distri-

bution.
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Gibbs sampler is a special case of the Metropolis Hasting, in such case the

acceptance probability α will be 1, so the candidate will be accepted at each

step since the candidates are being drawn from the correct full conditional

distribution. [2].

To introduce the Gibbs sampler, let π be a joint (posterior) distribution of a

bivariate random vector (X, Y ). Let π(X|Y ) be the conditional probability

distribution of X given Y . Similarly, let π(Y |X) be the conditional proba-

bility distribution of Y given X.

Now generate a bivariate Markov chain Zn = (Xn, Yn) as follows:

Start with some X0 = x0,

Xk ∼ π(X|Yk−1), for k= 1, 2, ... (3.13)

Yk ∼ π(Y |Xk), for k= 0, 1, 2, ... (3.14)

The next example explains the Gibbs sampler manually:

Example 3.2.3. Suppose the joint (posterior) distribution of x = 0, 1, ..., n

and 0y1 is given by:

π(x, y) =
n!

(n− x)!x!
yx+α−1(1− y)n−x+β−1 (3.15)

Now we need to calculate the marginal distribution of x and the marginal

distribution of y as follows: The marginal distribution of x is given by:

π(x) =

∫ 1

0

π(x, y)dy

=

∫ 1

0

n!

(n− x)!x!
yx+α−1(1− y)n−x+β−1dy

=
n!

(n− x)!x!

∫ 1

0

yx+α−1(1− y)n−x+β−1dy

=
n!

(n− x)!x!

Γ(x+ α)Γ(n− x+ β)

Γ(n+ α + β)
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The marginal distribution of y is given by:

π(y) =
n∑
x=0

π(x, y)

=
n∑
x=0

n!

(n− x)!x!
yx+α−1(1− y)n−x+β−1

= yα−1(1− y)β−1

n∑
x=0

n!

(n− x)!x!
yx(1− y)n−x

= yα−1(1− y)β−1.(1).

= yα−1(1− y)β−1.

The conditional probability distribution of x given y is given by:

π(x|y) =
π(x, y)

π(y)

=

n!
(n−x)!x!

yx+α−1(1− y)n−x+β−1

yα−1(1− y)β−1

=
n!

(n− x)!x!
yx+α−1−α+1(1− y)n−x+β−1−β+1

=
n!

(n− x)!x!
yx(1− y)n−x.

Thus,

x|y ∼ Bi(n, y).

The conditional probability distribution of y given x is given by:

π(y|x) =
π(x, y)

π(x)

=

n!
(n−x)!x!

yx+α−1(1− y)n−x+β−1

n!
(n−x)!x!

Γ(x+α)Γ(n−x+β)
Γ(n+α+β)

=
Γ(n+ α + β)

Γ(x+ α)Γ(n− x+ β)
yx+α−1(1− y)n−x+β−1.
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Thus,

y|x ∼ Be(x+ α, n− x+ β).

Now generate a bivariate Markov chain zn = (xn, yn) as follows:

Start with some X0 = x0,

xk ∼ Bi(n, yk−1), for k = 1, 2, ... (3.16)

yk ∼ Be(xk + α, n− xk + β), for k = 0, 1, 2, ... (3.17)

To illustrate the Gibbs sampler for the above, suppose n = 10, α = 1 and

β = 2. The algorithm of the sampler is as follows:

• Start with x0 = 2 and use it to obtain y0 from (3.17):

y0 ∼ Be(x0 + 1, 10− x0 + 2)

= Be(3, 10),

which gives y0 = 0.2379.

Therefore (x0, y0) = (2, 0.2379).

• x1 is obtained from (3.16):

x1 ∼ Bi(10, y0)

= Bi(10, 0.2379)

which gives x1 = 2.

y1 is obtained from (3.17):

y1 ∼ Be(x1 + 1, 10− x1 + 2)

= Be(3, 10)

which gives y1 = 0.1334.

Therefore (x1, y1) = (2, 0.1334).
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• x2 is obtained from (3.16):

x2 ∼ Bi(10, y1)

= Bi(10, 0.1334),

giving that x2 = 3.

And y2 is obtained from (3.17)

y2 ∼ Be(x2 + 1, 10− x2 + 2)

= Be(4, 9)

giving y2 = 0.4735.

Therefore (x2, y2) = (3, 0.4735)

• x3 is obtained from (3.16)

x3 ∼ Bi(10, y2)

= Bi(10, 0.4735)

giving x3 = 6

And y3 is obtained from (3.17)

y3 ∼ Be(x3 + 1, 10− x3 + 2)

= Be(7, 6)

giving y3 = 0.6338

Therefore (x3, y3) = (6, 0.6338).

• x4 is obtained from (3.16)

x4 ∼ Bi(10, y3)

= (10, 0.6338),
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giving x4 = 4.

And y4 is obtained from (3.17):

y4 ∼ Be(x4 + 1, 10− x4 + 2)

= Be(5, 8)

giving y4 = 0.4196.

Therefore (x4, y4) = (4, 0.4196).

The Gibbs sequence within five terms:

(2, 0.2379), (2, 0.1334), (3, 0.4735), (6, 0.6338), (4, 0.4196), ....
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Chapter 4

Bayesian Analysis of Finite

Exponential Mixtures

Exponential is useful and widely used distribution, it plays an important

role in modeling continuous data, and in the analysis of failure data when

the population is homogeneous. However, the world is producing more and

more data with complex structure, since in many practical problems, the real

data can be seen as coming from several subpopulations and the homogeneity

assumption may be unsuitable in those data. Then, when the population

consists of subpopulations, we prefer to use exponential mixture instead of

homogeneous exponential for the data.

In this chapter we present the finite Exponential mixture model using the

missing data formulation, and we will derive the full conditional posterior

distributions of all parameters.

We will use Gibbs sampler and algorithm to draw samples from posterior of

the exponential mixture in order to use them in the bayesian analysis.

We use these samples in the estimation of the unknown parameters of the of

the model.
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4.1 Finite Exponential Mixture Model

Recall that a random variable X has a finite mixture distribution if its pdf

function f satisfies

f(x) =
k∑
j=1

pjfj(x)

Where fj in this case are the pdfs of exponential distribution with distinct

parameters of the k mixture components or populations, and the mixture

proportions pj satisfy pj > 0 for j = 1, 2, ..., k, and
∑k

j=1 pj = 1.

The probability function of the k-finite exponential mixture is given by

f(x|λ, p) =
k∑
j=1

pjλje
−λjx (4.1)

Where p = (p1, p2, ..., pk), for some probabilities pj > 0, j = 1, ..., k, k > 1,

with
∑k

j=1 pj = 1. λ = (λ1, λ2, ..., λk), and we assume that λ1 < λ2 < ... < λk

to insure the identifiability of the above finite mixture.

Now, we will introduce definitions of some distributions that we will use in

this section.

Definition 4.1.1. (Bernoulli distribution) the Bernoulli distribution, named

after Swiss scientist Jacob Bernoulli, is the probability distribution of a ran-

dom variable which takes the value 1 with success probability of p, and the

value 0 with failure probability of q = 1 − p. It can be used to represent a

coin toss where 1 and 0 would represent ”head” and ”tail” (or vice versa),

respectively. The Bernoulli distribution is a special case of the binomial dis-

tribution; the Bernoulli distribution is a binomial distribution where n = 1.

If X is a random variable with this distribution, we have:

P (X = 1) = 1− P (X = 0) = 1− q = p

The probability mass function of this distribution, over possible outcomes k,
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is

f(k|p) =

p if k = 1 ,

1− p if k = 0.

Definition 4.1.2. [40] (Multinomial distribution) the multinomial dis-

tribution is a generalization of the binomial distribution. For n independent

trials each of which leads to a success for exactly one of k categories, with

each category having a given fixed success probability, the multinomial dis-

tribution gives the probability of any particular combination of numbers of

successes for the various categories.

The binomial distribution is the probability distribution of the number

of successes for one of just two categories in n independent Bernoulli trials,

with the same probability of success on each trial. In a multinomial distribu-

tion, the analog of the Bernoulli distribution is the categorical distribution,

where each trial results in exactly one of some fixed finite number k possible

outcomes, with probabilities p1, ..., pk (so that, pi ≥ 0, for i = 1, ..., k, and∑k
i=1 pi = 1), and there are n independent trials. Then if the random vari-

ables Xi indicate the number of times outcome number i is observed over the

n trials, the vector X = (X1, ..., Xk) follows a multinomial distribution with

parameters n and p, where p = (p1, ..., pk). While the trials are independent,

their outcomes X are dependent because they must be summed to n.

The probability mass function of this multinomial distribution is:

f(x1, ..., xk|n, p1, ..., pk) =

 n!
x1!...xk!

px11 ...p
xk
k , when

∑k
i=1 xi = n ,

0 otherwise.

The probability mass function can be expressed using the gamma function

as:

f(x1, ..., xk, p1, ..., pk) =
Γ(
∑

i xi + 1)∏
i Γ(xi + 1)

k∏
i=1

pxii
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Definition 4.1.3. [39] (Dirichlet Distribution) Is a family of continuous

multivariate probability distributions parameterized by a vector of positive

reals. It is the multivariate generalization of the beta distribution. Dirichlet

distributions are very often used as prior distributions in Bayesian statistics,

and in fact the Dirichlet distribution is the conjugate prior of the multinomial

distribution.

The Dirichlet distribution of order k ≥ 2 with parameters δ1, ..., δk > 0

has a probability density function

f(p1, ..., pk|δ1, ..., δk) =
1

B(δ)

k∏
j=1

p
δj−1
j

where pj ∈ (0, 1) and
∑k

j=1 pj = 1, k ≥ 2, where δj > 0.

The normalizing constant B(δ) is the multinomial Beta function, which

can be expressed in terms of gamma function:

B(δ) =

∏k
i=1 Γ(δi)

Γ(
∑k

i=1 δi)
, δ = (δ1, ..., δk).

4.1.1 The Likelihood Density

Throughout our discussion, n will denote the number of data points and k

will denote the number of components in the mixture formulation.

Since we present the finite exponential mixture model by using the missing

data formulation, so firstly, we will introduce the missing data indicators zi,

i = 1, 2, ..., n.

For each observation xi, i = 1, ..., n we have an indicator zi such that

zi = (zij)
k
j=1 = (zi1, zi2, ..., zik)

where

zij =

1 if the observation xi belongs to the jth component of the mixture,

0 otherwise.
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each zij takes on two values only 1 or 0, and for each zi only one of z,ijs equal

to 1, and the rest are all 0, therefore for fixed i,
∑k

j=1 zij = 1.

For each zi we have a single trial results in exactly one of k possible compo-

nents of the mixture, with probabilities p1, ..., pk, pj ∈ (0, 1) for j = 1, 2, ..., k

and
∑k

j=1 pj = 1.

Thus the density f(xi|zij = 1) is exponential(λj), and f(zij = 1|p)=pj.
Also for fixed i, and for all j = 1, ..., k, since zij takes in two values only 1 or 0,

then f(zij = 0|p) = 1− f(zij = 1|p) = 1− pj. Therefore, zij ∼ Bernolli(pj),

for each zi = (zij)
k
j=1, we have zi|p ∼ multinomial(1, p1, ..., pk).

So, the density of the indicator zi = (zij)
k
j=1 is

f(zi1, ..., zik|p1, ..., pk) =
1!

zi1!...zik!

k∏
j=1

p
zij
j

=
k∏
j=1

p
zij
j (since the value of zij takes only 0 or 1 for all j = 1, ..., k)

since z,is are independent, and by definition 1.2.2, the joint indicator density

is:

f(z|p) =
n∏
i=1

f(zi|p) =
n∏
i=1

k∏
j=1

p
zij
j .

Let X = X1, X2, ..., Xn be an iid random sample from an exponential mixture

density.

The likelihood density of the mixture is:

f(x|λ, p) =
n∏
i=1

f(xi|λ, p)

=
n∏
i=1

k∑
j=1

pj
1

λj
e
− x
λj
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And by using the indicator zi we can rewrite the likelihood as

f(x, z|λ, p) = f(x|z, λ, p)f(z|p, λ, x)

= f(x|z, λ)f(z|p)

=
n∏
i=1

k∏
j=1

(
1

λj
e
− xi
λj

)zij n∏
i=1

k∏
j=1

(pj)
zij

=
n∏
i=1

k∏
j=1

(
pj

1

λj
e
− xi
λj

)zij
.

4.1.2 Priors Densities

Priors densities of the parameters are chosen to be conjugate priors.

For the weights p

We follow the classical choice of a Dirichlet prior with a parameter δ =

(δ1, ..., δk), and we assume that δj = 1 for all j = 1, ..., k (as chosen by

Viallefont, V. and others.).

Let π(p) be the prior density of proportions p of our exponential mixture.

Then, we will assume that, p ∼ Dir(p1, ..., pk, δ1, ..., δk), with δj = 1, ∀j =

1, ..., k.

So the density of p is

π(p1, ..., pk|δ1, ..., δk) =
1

B(δ)

k∏
j=1

p
δj−1
j

=
Γ(
∑k

j=1 1)∏k
j=1 Γ(1)

k∏
j=1

p0
j

=
Γ(k)∏k
j=1 Γ(1)

=
(k − 1)!∏k

j=1 1
= (k − 1)!

Note that we get the fourth equality by using the identity Γ(n) = (n − 1)!,

when n is a positive integer.
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Now we want to prove that the conjugate prior of a mulinomial parameter

p = (p1, ..., pk) is Dirichlet(δ)

If X1, X2, ..., Xn are iid multinomial(1, p1, ..., pk), then the density of each

Xi, i = 1, ..., n is

f(xi1, ..., xik|p1, ..., pk) =
Γ(
∑k

j=1 xij + 1)∏k
j=1 Γ(xij + 1

k∏
j=1

p
xij
j

where xij ∈ {0, 1}, and
∑k

j=1 xij = 1.

Note that, we have a single trial resulting in exactly one of some fixed

finite number k possible outcomes, with probabilities p1, ..., pk.

And suppose the prior distributed as Dirichlet(δ), that is, the prior den-

sity is given by

f(p1, ..., pk|δ1, ..., δk) =
Γ(
∑k

j=1 δj)∏k
j=1 Γ(δj)

k∏
j=1

p
δj−1
j

where pj ∈ (0, 1) and
∑k

j=1 pj = 1, k ≥ 2, and δj > 0.

Let x = (x1, ..., xn), then the likelihood density is:

f(x|p) =
n∏
i=1

f(xi|p)

=
Γ(
∑k

j=1 xij + 1)∏k
j=1 Γ(xij + 1)

k∏
j=1

p
xij
j .
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The posterior density is:

f(p|x) ∝ f(x|p)f(p)

=
n∏
i=1

(
Γ(
∑k

j=1 xij + 1)∏k
j=1 Γ(xij + 1)

k∏
j=1

p
xij
j

)
Γ(
∑k

j=1 δj)∏k
j=1 Γ(δj)

k∏
j=1

p
δj−1
j

∝
n∏
i=1

k∏
j=1

p
xij
j

k∏
j=1

p
δj−1
j

=
k∏
j=1

p
∑n
i=1 xij

j

k∏
j=1

p
δj−1
j

=
k∏
j=1

p
∑n
i=1 xij+δj−1

j .

Obviously this is the density of a Dirichlet (
∑n

i=1 xi1 + δ1, ...,
∑n

i=1 xik + δk).

Note that the posterior density f(p|x) is in the same family as the prior

density f(p) with different parameters.

Therefore f(p) is conjugate prior for p.

For the parameters λj

For parameters λj, j = 1, ..., k an inverse gamma density is often chosen as

a prior. That is if f(λj) denote the prior density of the jth parameter of

exponential mixture then

λj ∼ inverse gamma(α, β).

Let X1, X2, ..., Xn be i.i.d exponential(θ), and suppose the prior density as

inversegamma(α, β), that is, the prior density is given by

f(θ) =
βα

Γ(α)
θ−α−1e−

β
θ , θ > 0, α > 0, β > 0.
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The likelihood density is:

f(x|θ) =
n∏
i=1

f(xi|θ)

=
n∏
i=1

1

θ
e−

xi
θ

= (
1

θ
e−

x1
θ )(

1

θ
e−

x2
θ )...(

1

θ
e−

xn
θ )

=
1

θ
.
1

θ
.....

1

θ︸ ︷︷ ︸
n-copies

e−
x1
θ .e−

x2
θ .....e−

xn
θ

=
1

θn
e−

(
∑n
i=1 xi)

θ .

The posterior density is:

f(θ|x) ∝ f(x|θ)f(θ)

=
1

θn
e−

(
∑n
i=1 xi)

θ
βα

Γ(α)
θ−α−1e−

β
θ

=
βα

Γ(α)

1

θn
θ−α−1e−

∑n
i=1 xi
θ e−

β
θ

=
βα

Γ(α)︸ ︷︷ ︸
does not involve θ

θ−n−α−1e−
(
∑n
i=1 xi+β)

θ

The posterior density becomes:

f(θ|x) ∝ θ−(n+α)−1e−
(
∑n
i=1 xi+β)

θ .

Clearly this is an inverse gamma density with parameters n+α, and
∑n

i=1 xi+

β.

So,

(θ|x) ∼ inverse gamma

(
n+ α,

n∑
i=1

xi + β

)
Note that the posterior density f(θ|x) is in the same family as the prior

density f(θ) with different parameters. Therefore f(θ) is conjugate prior for

θ.
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4.1.3 The posterior density

By using the conditional independence, the joint density of all variables can

be written in general as

f(λ, p, z, x) = f(x, z|λ, p)f(λ, p)

= f(x, z|λ, p)g(λ)π(p) ( λ and p are independent)

where p = (pj)
k
j=1, z = (zij)

k
j=1, λ = (λj)

k
j=1, x = (xi)

n
i=1.

Note that parameters λjs are independent, so the prior joint density for

λ is then given by

g(λ) = g(λ1)...g(λk).

By Bayes, theorem the posterior joint density given by

f(λ, p, z|x) =
f(λ, p, z, x)

f(x)

∝ f(λ, p, z, x)

= f(x, z|λ, p)g(λ)π(p)

= f(x|λ, z)f(z|p)g(λ)π(p)

=
n∏
i=1

k∏
j=1

(
1

λj
e
xi
λj

)zij n∏
i=1

k∏
j=1

(pj)
zij × g(λ1)× ...× g(λk)× (k − 1)!

where g(λj) ∼ inversegamma(α, β), with different variables α, β for each λj,

j = 1, ..., k.

4.2 Full Conditional Posterior Distributions

In this section we will find the full conditional distributions, using the Gibbs

sampler method, which is one of a set of Markove chain Monto Carlo (MCMC)

methods, in which the full conditional posterior distributions of all parame-

ters are required. Using our likelihood, priors, and posterior joint density we
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obtain all full conditional posterior densities by ignoring all terms that are

constant with respect to the parameter.

Recall that for our finite exponential mixture, the likelihood distribution is:

f(x, z|λ, p) =
n∏
i=1

k∏
j=1

(
pj

1

λj
e
− xi
λj

)zij
and our priors for λj, j = 1, ..., k, are

λj ∼ inverse gamma(α, β)

and the priors for proportions p,

p ∼ Dirichlet(δ, δ, ..., δ), δ = 1.

4.2.1 λj Posterior

The full conditional posterior density for λj is

f(λj|λ1, ..., λj−1, λj+1, ..., λk, p, z, x) ∝ f(x|λ, z)g(λj)

=

(
n∏
i=1

k∏
j=1

(
1

λj
e
− xi
λj

)zij)
× βα

Γ(α)
λ−α−1
j e

− β
λj

=
n∏
i=1

(
1

λj
e
− xi
λj

)zij
× βα

Γ(α)
λ−α−1
j e

− β
λj

∝
n∏
i=1

(
1

λj
e
− xi
λj

)zij
× λ−α−1

j e
− β
λj

=

(
1

λj
e
−x1
λj

)z1j
× ...×

(
1

λj
e
−xn
λj

)znj
× λ−α−1

j e
− β
λj

=

(
1

λj

)z1j
× ...×

(
1

λj

)znj
× e−

x1z1j
λj × ...× e−

xnznj
λj

× λ−α−1
j × e−

β
λj

=

(
1

λj

)∑n
i=1 zij

.λ−α−1
j .e

− 1
λj

∑n
i=1 xizij .e

− 1
λj
β

= λ
−(

∑n
i=1 zij+α)−1

j .e
− 1
λj

(
∑n
i=1 xizij+β)
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Therefore,

λj ∼ inverse gamma(
n∑
i=1

zij + α,

n∑
i=1

xizij + β) (4.2)

Remark 4.2.1. The second relation in the previous equations because we

ignore all terms that does not involve λj, so we omit pj, and

j−1∏
1

(
1

λj
e
− xi
λj

)zij k∏
j+1

(
1

λj
e
− xi
λj

)zij

4.2.2 p Posterior

The full conditional posterior density for p is

f(p|z, λ, x) ∝ f(z|p)π(p)

=
n∏
i=1

k∏
j=1

(pij)
zij(k − 1)!

=
k∏
j=1

p
∑n
i=1 zij

j (k − 1)!

∝
k∏
j=1

p
∑n
i=1 zij

j

=
k∏
j=1

p
(
∑n
i=1 zij+1)−1

j

So, from last equation we note that

p ∼ Dirichlet

(
1 +

n∑
i=1

zi1, ..., 1 +
n∑
i=1

zik

)
. (4.3)

4.2.3 zi Posterior

For each observation xi, i=1,...,n we have an indicator zi such that

zi = (zi1, zi2, ..., zik) = (zij)
k
j=1
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where each zij takes on two values only 1 or 0, and for each zi only one of

z,ijs equal to 1 and the rest are all 0.

Therefore for fixed i,
∑k

j=1 zij = 1.

Using Bayes, theorem we have,

for fixed i, i = 1, ..., n, and for j = 1, ..., k,

f(zij = 1|xi, λ, p) =
f(xi|λ, p, zij = 1)f(zij = 1|λ, p, xi)∑k
j=1 f(xi|λ, p, zij = 1)f(zij = 1|λ, p, xi)

=
f(xi|λ, zij = 1)f(zij = 1|p)∑k
j=1 f(xi|λ, zij = 1)f(zij = 1|p)

=
f(xi|λj)pj∑k
j=1 f(xi|λj)pj

=
f(xi|λj)pj
f(xi)

.

Since each zij takes two values only 1 or 0, then

f(zij = 0|xi, λ, p) = 1− f(zij = 1|xi, λ, p) = 1− f(xi|λj)pj
f(xi)

.

Thus

zij ∼ Bernoulli

(
f(xi|λj)pj
f(xi)

)
so zi = (zij)

k
j=1 ∼ multinomial (1, wi1, ..., wik), i = 1, ..., n, j = 1, ..., k, where

wij =
f(xi|λj)pj
f(xi)

, j = 1, ..., k. See [5].

4.2.4 Gibbs Updates for Fixed k

We consider a mixture of exponentials where, conditional on there being k

components in the mixture. All the parameters of our exponential mixture

have full conditional densities that are well known and easy to sample from.

We can therefore perform Gibbs updates on them where the draws are from

their full conditionals. The general Gibbs algorithm for fixed k is then
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Step 1: Pick a starting values of the parameters for the Markov chain, say

(λ0
1, ..., λ

0
k, p

0, z0
1 , ..., z

0
n)

Step 2: Update each variable in turn at the lth iteration, l = 1, ..., N :

(a) Gibbs update of λj: j = 1, ..., k: Sample λlj from gamma (n +

αj,
∑n

i=1 zij + βj) using the most up-to-date values of zij .

(b) Gibbs update of proportions p: Sample pl from Dirichlet (1 +∑n
i=1 zi1, ..., 1+

∑n
i=1 zik) using the most up-to-date values of zi1, ..., zik.

(c) Gibbs update of indicators zi: Sample zli from multinomial (1, wi1, ..., wik)

i = 1, ..., n, j = 1, ..., k, where

wij =
f(xi|λj)pj
f(xi)

, j = 1, ..., k.

using the most up-to-date values of λj and p.

(d) We now have a new Markov chain state (λl1, ..., λ
l
k, p

l, zl1, z
l
k)

Step 3: Return to step 2, N −1 times to produce a Markov chain of length

N. See[12]

4.3 Study Case

In this section we apply our exponential mixture model of two components

on real data example to illustrate our methodology.

Our example uses a dataset from length of hospital stay project (LOS). This

data study the length stay of patients in a psychiatric hospital in North East

London in 1991 and this was studied by Harrison and Millard (1991) and

McClean and Millard (1993).

Health service researchers frequently study length of hospital stay (LOS) as

a health outcome. Generally originating from heavily skewed distributions,
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LOS data can be difficult to model with a single parametric model. Mixture

models can be quite effective in dealing with such data. This example illus-

trates how to perform a Bayesian analysis of an exponential mixture model

for LOS data. The experimental MCMC procedure is used for this analysis.

See[42]

We simulate a sample using the Gibbs sampler which use the full conditional

distributions derived in the previous section. We do this by using an R script

that we modify to suit our exponential mixture model of two components,

we employ it to generate samples to make estimation of the unknown param-

eters of the model, and to perform the required Bayesian analysis by using

the simulation results.

4.3.1 Estimation results

We choose the initial values for the parameters α, β, p1, p2, λ1, and λ2 like

this:

α = β = 0.5

p1 = p2 = 0.5

λ1 = 600, λ2 = 5000

Summary for λ1:

Table 4.1: Summary for λ1

Min 1st Qu median mean 3rd Qu Max sd

353.9 571.6 619.8 621.2 670.1 924.8 73.7254

Summary for λ2:
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Table 4.2: Summary for λ2

Min 1st Qu median mean 3rd Qu Max sd

5000 7283 7733 7786 8233 12090 729.31

Summary for data:

Min 1st Qu median mean 3rd Qu Max

1 285 1134 3712 3855 24030

• p1: Mean= 0.5648608, sd=0.03947177

• p2: Mean= 0.4351392, sd=0.03947177

• z1: Mean= 0.5651891, sd=0.4957322

• z2: Mean= 0.4349109, sd=0.4957454

4.3.2 Simulation results

These figures show that the data is not homogenous, so we don,t use the usual

homogenous exponential distribution and we use mixture model to express

this data.

From these figures for λ1 we see that λ1 is symmetric and has gamma density.
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Figure 4.1: Time series plot for the data.

Figure 4.2: Data plot and its histogram.
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Figure 4.3: Markov chain for λ1.

Figure 4.4: Density plot for λ1.
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Figure 4.5: Histogram for λ1.

Figure 4.6: Density plot for λ1 and its histogram.
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Figure 4.7: Markov chain for λ2.

Figure 4.8: Density plot for λ2.
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Figure 4.9: Histogram for λ2.

Figure 4.10: Density plot for λ2 and its histogram.
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Figure 4.11: Markov chain for p1.

Figure 4.12: Histogram for p1.
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Figure 4.13: Markov chain for p2.

Figure 4.14: Histogram for p2.
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