

Computer Engineering Department

Faculty of Engineering

Deanery of Higher Studies

Islamic University – Gaza

Palestine

Author Attribution from

Arabic Texts

Mohammed F. Eltibi

Supervisor

Prof. Ibrahim S. I. Abuhaiba

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

1434H (2013)

iii

iv

DEDICATION

To My Father, and Mother,

To My Wife,

To My Family, and Friends,

v

ACKNOWLEDGMENT

All thanks are to Allah the almighty, who guide me to accomplish this

work, so all praise is to Allah.

Also the completion of this work cannot done, without all people

around me, especially my advisor Prof. Ibrahim S. I. Abuhaiba, who

guided me through this research; his patience and support leaded me to

success through and until the completion of this thesis.

vi

Table of Contents

LIST OF ABBREVIATIONS .. viii

LIST OF SYMBOLS ... ix

LIST OF FIGURES .. x

LIST OF TABLES ... xii

ARABIC ABSTRACT .. xiii

ABSTRACT .. xiv

Chapter 1: INTRODUCTION ... 1

1.1 Authorship Attribution Definition.. 1

1.2 Applications of Authorship Attribution 1

1.3 Author Attribution Categories .. 3

1.4 Approach .. 4

1.4.1 Features ... 4

1.4.2 Attribution ... 9

1.5 Research Overview .. 10

1.5.1 Objective ... 10

1.5.2 Methodology ... 11

1.5.3 Contribution .. 12

1.5.4 Organization .. 13

Chapter 2: RELATED WORKS ... 16

2.1 Machine Learning-Based Methods .. 16

2.2 Features Selection Methods ... 22

2.3 Other Methods .. 23

Chapter 3: THEORETICAL BACKGROUND 26

3.1 Probabilistic Context Free Grammar 26

3.2 Chi-Square Feature Selection ... 31

3.3 Genetic Algorithm .. 32

3.4 Leave-One-Out Method ... 34

vii

Chapter 4: PROPOSED METHOD .. 37

4.1 Overview .. 37

4.2 Parsing .. 41

4.3 Training .. 41

4.3.1 PCFG Rules Probabilities ... 42

4.3.2 Non-terminals Probabilities .. 44

4.3.3 Terminals Probabilities ... 46

4.3.4 Punctuation Marks Probabilities 47

4.3.5 Chi-Square Score (X
2
) ... 47

4.4 Classification .. 49

4.5 Computing Optimum Weights ... 56

Chapter 5: EXPERIMENTATION AND RESULTS 59

5.1 Dataset .. 59

5.2 System Environment .. 59

5.2.1 Parser .. 60

5.2.2 Genetic Algorithm .. 64

5.2.3 Hardware ... 64

5.3 Experiments .. 66

5.3.1 Parsing .. 66

5.3.2 Training ... 66

5.3.3 Computing Optimum Weights .. 67

5.4 Performance Measurement ... 68

5.5 Results .. 69

Chapter 6: CONCLUSIONS.. 79

6.1 Summary and Concluding Remarks....................................... 79

6.2 Recommendations and Future Work 82

REFERENCES .. 84

viii

LIST OF ABBREVIATIONS

AFP Agency France Press

API Application Programming Interface

ATB Arabic Treebank

CFG Context-free grammar

IG Information Gain

JGAP Java Genetic Algorithms Package

KNN K- Nearest Neighbor

MI Mutual Information

NLP Natural Language Processing

PCFG Probabilistic Context Free Grammar

POST Part of Speech Tagging

RBF Radial Basis Function

SOM Self-Organized Map

SVM Support Vector Machines

TiMBL Tilburg in Memory Based Learner

UTF Unicode Transformation Formats

X
2
 Chi Square Score

XPCFG Enhanced Probabilistic Context Free Grammar

ix

LIST OF SYMBOLS

G Language Grammar

Σ Set of terminals

N Set of non-terminals

S Start symbol

R Set of production rules

U Set of punctuation marks

P Set of rules’ probabilities

PT Set of terminals’ probabilities

PN Set of non-terminals’ probabilities

PU Set of punctuation marks’ probabilities

VP Verbal phrase

VBP Imperfect verb

NP Noun phrase

PP Prepositional phrase

IN Subordinating conjunction or Preposition

DTNN Common noun

 Final log-likelihood

 Log-likelihood of terminal rules

 Log-likelihood of non-terminal rules

 Log-likelihood of terminals

 Log-likelihood of non-terminals

 Log-likelihood of punctuation marks

x

LIST OF FIGURES

Figure 3.1 The rules generated from the sentence (تطلع الشمس من الشرق),

where each rule describes a block structure of the sentence….28

Figure 3.2 A tree representation of the sentence (الشمس من الشرقتطلع), where

every node represent terminal, or non-terminal, and the arcs

represent a parent-child relationship…………………….…….29

Figure 3.3 Simple Genetic Algorithm procedure…………………………34

Figure 4.1 The process of generating the enhanced language model XPCFG

for a specific author, using a set of training documents that are

belongs to the author………………………………………..…39

Figure 4.2 Estimation of optimum weights between different features in

XPCFG model for a specific author…………………………..40

Figure 4.3 Classification a test document, the classifier inputs are a test

document, authors XPCFG models, and weights for all

authors…………………………………………………………41

Figure 4.4 Training XPCFG language model…………………………….42

Figure 5.1 Parsing time and document size in training and testing data

set……………………………………………………………...70

Figure 5.2 Parsing time and document size in Held-out data set…………70

Figure 5.3 Training time and document size, where document size is the

size of the leaved document in training……………………….71

xi

Figure 5.4 Precision for each author, using the three model; PCFG,

XPCFG, and XPCFG with weights…………………………...76

Figure 5.5 Accuracy for each author, using the three model; PCFG,

XPCFG, and XPCFG with weights…………………………...76

Figure 5.6 Error rate for each author, using the three model; PCFG,

XPCFG, and XPCFG with weights, some authors do not have

error rate for some of their models……………………………77

xii

LIST OF TABLES

Table 3.1 The rules generated from the sentence S = (الشرقتطلع الشمس من),

with probabilities for each rule in two different PCFG models

(M1, and M2) ...……………………………………..…….…...31

Table 4.1 Probabilities for non-terminal rules, terminal rules, non-terminals,

and terminals for two different authors, with chi-square score for

PCFG rules for the two authors………………………………...54

Table 5.1 Authors’ names, and documents averaged size, that used to form

training and testing data set, plus the Held-out data

set……………………………………………………………….60

Table 5.2 English POST which is used as mapped tags for Arabic

morphological analysis....………………………………………65

Table 5.3 PCFG Model Results………………………………..………….73

Table 5.4 XPCFG Model Results....……………………………...……….73

Table 5.5 XPCFG weights for authors, calculated by Genetic Algorithm..75

Table 5.6 XPCFG Model Result using different weights……………..…..75

xiii

 تحديد هوية المؤلف من النصوص العربية

 محمد فؤاد الطيبي

 ملخص

. حد النصوص مجهولة الكاتبألى إسناد مؤلف إتحديد هوية المؤلف من النصوص عبارة عن

عبر استخدام نموذج اللغة، حيث يعتمد النموذج جديدة لحل هذه المشكلة، رؤيةقمنا بعرض

 Probabilistic Context Free Grammar "الجديد على تحسين النموذج المسمى

"(PCFG) الاحتمالات إضافةعبر ،والمعجميةعبر تدعيمه بالمزيد من الخواص النحوية

كل قاعدة ل ودةت الموجحتمالاالا ، بجانبلكل من الكلمات ووصف الكلمة وعلامات الترقيم

 إسنادتم تدعيم نموذج اللغة المقترح بدالة أيضا . PCFGكتابة التي تنتج عن استخدام النموذج

ن النموذج الجديد يحتوي على ولأ .قيمة النقاط لكل من قواعد الكتابة بإسنادالنقاط، التي تقوم

الخاصية في وزن لكل خاصية والذي يتحكم بمعدل مشاركة إضافةعدة خواص مختلفة، تم

النصوص، ميزة استخدام العديد من الخصائص هو قدرة نموذج اللغة لأحدمؤلف إسنادعملية

استخدام دالة أيضا . العديد من طرق الكتابة المختلفة للمؤلفين وتحديد المقترح على وصف

 بالإضافة ،فعالية في التفريق بين طرق الكتابة الأكثرالنقاط يساعد على تحديد قواعد الكتابة

وصف طرق أيضايدعم الأوزاناستخدام إن . تجاهل قواعد الكتابة التي تؤثر على الكفاءة إلى

يساعد على أنيمكن الأوزانوضع قيم مناسبة لهذه أن حيثالكتابة المختلفة للمستخدمين،

كل ل عربي نص 02مؤلفين، بحيث يوجد 9تم تجربة النموذج الجديد على . النظام كفاءةزيادة

أن في حين . Leave-One-Outتجريب باستخدام طريقة التدريب والمؤلف ، وقد تمت عملية

والذي استخدم Genetic Algorithmباستخدام تمت للأوزان المناسبةالقيمة إيجاد عملية

 02، حيث احتوت المجموعة الجديدة على الأولىمجموعة نصوص مختلفة عن المجموعة

 النتيجةحيث تعتبر هذه % 99موذج الجديد دقة بلغت نسبتها حقق الن .نصوص لكل مؤلف

مناسبة يستطيع زيادة الدقة أوزانتطبيق أيضا، % 5.9بنسبة الأصليتحسين على النموذج

 %.99 إلى

xiv

Author Attribution from Arabic Texts

Mohammad F. Eltibi

ABSTRACT

Author attribution is the problem of assigning author to an unknown

text. We propose a new approach to solve such a problem, by using an

enhanced language model, our model is an enhanced version of the

probabilistic context free language model (PCFG), by supplying it

more syntactic, and lexical information. So that behind the probabilities

for the production rules generated from PCFG, we add probabilities for

terminals, non-terminals, and punctuation marks. Also the new

language model is augmented with a scoring function, which assigns a

score for each production rule. Since the new model contains different

features, weights are added to the model to govern how each feature

participates in classification. The advantage of using many features is

to successfully capturing the different writing styles for authors, also

using a scoring function can help by identifying the most discriminate

rules, and ignoring the general rules that can affect the performance.

Using weights supports capturing different authors’ styles, and setting

weights properly can increase classifier’s performance. The new model

is tested over 9 authors, each has 20 Arabic documents, where the

training and testing is done using Leave-One-Out method. The model

achieves 95% of accuracy, which is an enhancement of 3.5% over

PCFG. While searching for best weights is implemented using Genetic

algorithm over a new corpus of 10 documents per author, this increase

the accuracy to 96%.

Keywords: Author Attribution, Author Identification, Language Model,

PCFG Language Model, Chi-Square Score, Genetic Algorithm.

1

Chapter 1

INTRODUCTION

1.1 Authorship Attribution Definition

Author attribution is the problem of identifying the author of an

anonymous text, or text whose authorship is in doubt, by studying

strategies for discriminating between the styles of different authors,

also it can be defined as the automatic identification of the author of a

text on the basis of linguistic features of the text.

1.2 Applications of Authorship Attribution

The old applications for author attribution include the traditional

plagiarism detection, as settling disputes regarding the authorship of

old historically documents, also its importance appears in many fields

such as civil law, which including copyrights violation [1], and literary

research. The most common problem is the authorship of the Federalist

Papers, which is a series of 146 political essays written by John Jay,

Alexander Hamilton, and James Madison. Twelve of which claimed by

both Hamilton and Madison was undoubtedly the most influential work

in authorship attribution. Plagiarism detection applications are also

important in commercial field, and academic field. In commercial field

the copyright problem is a traditional example. While in academic,

author attribution can be used to detect plagiarism in college essays.

Another field that needs author attribution is criminal law, which

includes determination of documents authority in courts, and forensic

2

linguistics. A real case [1] occurred when a government employee

wrote an email to his supervisor in which he disparaged her racial

heritage, after he was terminated, he sued the government, claiming

that someone break his workspace and sending the email from his

computer, in such a case the court needs to at least find if the employee

wrote the email or not.

More recently, author attribution gained new importance in cyber

crimes, including deducing the writer of inappropriate communications

that were sent anonymously or under a pseudonym, and in a more

general search for reliable identification techniques [1]

Another area where author identification and profiling can provide

valuable information is in deriving marketing intelligence from the

acquired profiles [2], and in the rapidly growing field of sentiment

analysis and classification [3].

Author attribution appears in specific applications as recognizing the

author of a program to help detect copyright violation of source code as

well as plagiarism [4]. Also it helps the developing of the applications

by identifying the author of non-commented source code that we are

trying to maintain. Finally it is useful to detect the programmer of a

malicious codes, and viruses [5]

Due to the growing increase in the number of documents (especially in

the web), an automated text categorization is a useful way to organize a

large documents collection, and a one useful categorization of

documents is classifying documents by their authors. Author

attribution is becoming an important application in web information

3

management, and beginning to play a role in areas such as information

retrieval, information extraction and question answering.

The variety in the applications of author attribution, is returned to the

categories of the author attribution problem. Our definition (identifying

the author of an unknown text) is one of many categories of the

problem, called author classification. Next section overviews some

categories of author attribution problem.

In this thesis the term author attribution and author classification will

be the same.

1.3 Author Attribution Categories

The scope of author attribution problem do not include only identifying

the author of an unknown text, there are several author analysis tasks

for authorship problem, including the followings:

1. Author Classification and Verification: in author

classification we will decide the author for an unknown text, or

in verification decide whether a given text was written by a

certain author, this will be our study scope in this thesis.

2. Plagiarism Detection: we discussed previously that

plagiarism detection is one from many applications for author

attribution problem, in plagiarism detection we interested to

find the similarity between two texts [6].

3. Author Profiling: this scope includes finding information

about the author from his written texts; the information may

include his age, education, sex, etc.

4

4. Detection of Inconsistent Styles: in this analysis the goal is to

analyze a written text to detect if there exist parts of text, which

are inconsistent with the others, this can help in case of

collaborative writing, where many of authors write in same

text[6].

1.4 Approach

The general approach that was used to solve such a problem starts from

a set of training documents, which are documents whose authors are

known, then a set of features that considered to be most informative in

identifying the author are extracted, then a machine learning algorithm

is implemented and learned using these features, to be able to classify a

document with unknown author.

Researches were done to find the most informative features to be used

for the author attribution problem, and best machine learning algorithm

to be used to classify unknown text accurately. Next sections illustrate

these features, and different attribution methods.

1.4.1 Features

Researchers tried to taxonomy the features that can be used in author

attribution in order to quantify the writing style. The basic

categorization is lexical, character, syntactic, and semantic features.

Following we will describe each set of features.

(a) Lexical Features:

Using this set of features the text is viewed as a sequence of tokens

that grouped into sentences, where a token is a word or punctuation

mark. From this representation some features can be used, as length

5

of sentences, and length of words. Although these features are

basic but its advantage is that they can be applied to any language

with no additional requirements, but still we need a tokenizer tool

to detect tokens and sentences boundaries. While these features are

available for any text, these features may not capture the style of a

written text, especially for texts contain lot of abbreviation.

Another features can be extracted from tokens is the vocabulary

richness features which measure the diversity of the vocabulary of a

text. A traditional example that used in author attribution problem is

the type-token ratio described by V/N, where V is the size of the

vocabulary which is number of unique words, and N is the total

number of tokens. Another vocabulary richness features are the

hapax legomenon, and hapax dislegomenon, which is words

occurring once, and words occurring twice respectively. The

vocabulary richness features are biased toward text length as they

increased when the text length increased, so they are considered

unreliable to be used alone.

A more efficient approach is to measure the frequency of each

word, where the text is viewed as a set of words each having a

frequency of occurrence disregarding contextual information, one

can argue that words frequencies cannot capture authors style since

they are topic dependent, actually this is true but the big advantage

of using words frequencies is to specifying function words, which

are words that have little lexical meaning but serve to express

grammatical relationships with other words, and these words are

proved to capture the style of the authors across different topics,

although using function words can capture writing style of the

6

authors, but the selection of the specific function words require

language dependent expertise. There are various researches were

done to find best function words for author attribution problem [7].

While words frequencies feature computes the frequency of each

word without regarding the contextual information, the n-grams

take advantages of contextual information. An n-gram is a

contiguous sequence of n items from a given sequence of text or

speech, where an item is usually a word, and n is the number of

grams that controls the level of context. N-grams were used as

textual features in author attribution problem [8] and can achieve

good results but not always, because they may capture content

specific information rather than stylistic information.

Uncommon lexical features [9] measure various writing errors to

capture authors writing styles. These features are captured using

spell checker tools, however the accuracy of spell checker is

problematic for many languages, and the available text always

error-free since it is available in electronic form.

(b) Character Features:

According to these features a text is viewed as a sequence of

characters, so that simple character level measures can be defined,

as alphabetic characters count, digit characters count, letter

frequencies, and punctuation marks. These features are available for

any language, and can easily be found without needing any extra

tools.

Another effective approach is to extract n-grams on the character

level [10], character based n-grams are also computationally

7

simple, the approach is to extract the frequencies of each character

based n-gram, this approach is able to capture nuances of style

including lexical information, contextual information, and using of

punctuation marks, the other advantage of this model is its ability to

be tolerant to noise. In cases that the texts are noisy containing

grammatical errors or making strange use of punctuation, the

character based n-gram model is not affected dramatically. This

model shows an acceptable result in author attribution problem, but

such a method requires more experiments to find the best value for

n. Also the dimensionality of this representation is considerably

increased in comparison to the word-based approach, since many n-

grams are needed to represent a single word, so that it may capture

redundant information.

(c) Syntactic Features:

A more efficient feature, that can extracted from a text is the

syntactic information, where the idea is that authors tend to use

similar syntactic patterns, which are out of their consciously. In

comparison to lexical and character level features, the syntactic

features are considered more valuable to detect the writing styles of

authors.

The first attempt to use syntactic features [11] was done by

producing parse tree for each sentence in a document, and then

extracting writing rules frequencies. The results of using these rules

in author attribution problem is acceptable, but syntactic features

alone performed worse than lexical features, also the syntactic

features require robust and accurate Natural Language Processing

(NLP) tools to perform analysis of text, thus the extraction of such

8

features is language-dependent procedure, depends on the

efficiency of NLP tools.

The simple approach of syntactic features is to use Part of Speech

Tags (POST), so that each word will be assigned a tag based on

contextual information, then frequencies’ for each tag are computed

as features. This type of syntactic features provides only a hint of

the structural analysis of sentences, since it is not clear how the

words are combined to form phrases, or how the phrases are

combined into higher-level structures.

(d) Semantic Features:

NLP tools can be applied successfully to low-level tasks, such as

sentence splitting, POS tagging, text chunking, and partial parsing,

so relevant features would be measured accurately and the noise in

the corresponding data sets remains low. On the other hand, more

complicated tasks such as semantic analysis can not yet be handled

adequately by current NLP technology for unrestricted text. As a

result very few attempts have been made to exploit high level

features for stylometric purposes.

An important method [12] used semantic features, by estimating

information about synonymous and hypernyms of the words, and

identification of casual verbs, in order to detect semantic

similarities between words. Also a more advanced approach tried to

assign words, or phrases semantic information based on their

meaning and indication.

9

It is clear that the semantic features require a more advanced NLP

tools, where such tools are not available, and if some tools are

developed, they are still not very efficient.

1.4.2 Attribution

Author attribution problem is a classification problem, since the goal is

to assign author for an unknown document, so that there is a set of

candidate authors, a set of text samples of known authorship covering

all the candidate authors (training corpus), and a set of text samples of

unknown authorship (test corpus), where each one of texts should be

attributed to a candidate author.

The authorship attribution approaches can be classified according to

whether they treat each training text individually or cumulatively (per

author). The methods which treat documents cumulatively per author

will produce a cumulative representation of that author’s style based on

his training documents. This is usually implemented using machine

learning algorithms, which are trained using texts samples for each

author to produce a classifier (maybe separate classifier for each

author). Then an unknown text will be assigned to such a classifier to

obtain the author of the test document. With the evolving of NLP tools,

some few methods use the language models in author attribution

problem, to produce a representation of author’s style using author’s

training documents; such methods build an individual language model

for each author from his training documents. In attribution process the

test document will be assigned the author of the model that has the best

ability to produce the test document.

10

On the other hand the methods that treat each training document

individually, considers each author’s document represents his style. So

that a test document is compared with all training documents, to find

the best matching one, then assigning to test document the author of

training document, which most matches it. This approach is

implemented based on Information retrieving method, by computing a

score between the test document, and each training documents. Thus

the best matching document is the one that has the highest score.

This classification of attribution process is not formal; it just illustrates

the various attribution processes, since there are some author attribution

approaches combine the two previous methods.

1.5 Research Overview

1.5.1 Objective

In our method we focus on author attribution problem, and the main

goal is to classify the author of an unknown text accurately.

Due to the importance of author attribution problem, we need to find a

new method that can capture the style of authors, to classify an

unknown text. For critical applications, this method should gain a high

accuracy. There are many solutions to author attribution problem, most

of them follow the process of identifying set of features that considered

most informative for authors styles, then a classifier is implemented

based on those features in order to assign an author for a test document.

Our method will use the language models [13] in order to assign author

to a test document (of unknown author), this will done by improving

one of the language models, so that it efficiently could reflect the most

11

informative features for author attribution problem, so that increasing

the accuracy of the classification process.

1.5.2 Methodology

Researchers assume that all authors have specific style characteristics

that are outside their conscious control; hence on the basis of those

linguistic patterns and markers, the author of a document can be

identified.

Our method starts by forming a language model for each author from

his own training documents, this standard language model can

effectively describe the language syntax for each author, such a syntax

is considered as one of syntactic features, which is one type of features

that can be used in author attribution problem, and proved to be

informative about authors styles, however this type of features alone is

not efficient to discriminate authors.

The proposed method tries to enhance the language model by involving

more syntactic features than the language syntax, as Part of Speech

Tagging (POST) feature, where each word will be assigned a tag,

reflects its corresponding part of speech, such as noun, verb, etc. Plus

this more lexical features will be added. Thus by adding this we will

have an enhanced language model that contains rich features of

different types, thus can be effectively used in author attribution

problem. This enhanced language model is produced for each author

using his own training documents.

When classifying an unknown document, the method starts to form an

uncompleted language model to represent the test document, then

matches this language model with each author’s language model, so

12

that the test document will be assigned the author whose language

model produces the best match with test document language model.

As we said the language model captures the language syntax of a

document, this is done by producing a set of writing rules form that

document, and since an author will have many documents, it is often to

have a lot of such rules. The proposed method will automatically find

the best of the writing rules, by assigning each rule a score based on its

efficiency in discriminating authors.

1.5.3 Contribution

Our first contribution is to use language models to produce the features

from author’s documents, this is because the linguistic features are

considered effective features in author attribution problem [14], also we

will enhance the language model to capture more syntactic features,

and lexical features. Incorporating more features produces a rich

language model that can be used effectively in author attribution

problem, while this process may produce unneeded or redundant

information, so that another enhancement is to use scoring function

which assigns a score for each rule produced by the language model for

an author, the advantage of such function is to automatically finding the

most informative rules that can be used to classify a test document,

another advantage of the scoring function is that it will find the best

rules without needing a prior knowledge of the written language, also

no information about the structure of the language is needed to discover

syntactic features as function words, they will be discovered

automatically for any language.

13

So that the proposed method can be viewed as a language-free method

that can be used with any language (the method works in Arabic

language).

Because of the importance of lexical features [15], the method will

involve some lexical features to enhance the language model, in order

to increase the accuracy of the classification process, where an

optimization method will be used to assign a best weight for each

feature type to get a high accuracy. The advantage of such weights is to

govern how each feature in the language model participates in

classification process. Many researches were done in order to select

best features for author attribution problem. Optimizing weights for

each feature in classification can select the most efficient features for

each author. Another advantage is that each author will be assigned his

own weights for different features, so that there is a flexibility in

selecting most efficient features, for example the method may optimize

a high weight for lexical feature for a specific author, while for another

author it optimize a high weight for syntactic feature, so that the

method will not select a lexical feature, over syntactic feature or the

opposite. It just finds the optimized features for each author, the

advantage of this optimization process it the ability to cover more styles

of authors.

1.5.4 Organization

The next chapter (Chapter 2) will view a related works for the author

attribution problem, we will describe each work that was done in the

field, focusing on the features that used in author attribution problem,

the classification (attribution) method that used to assign author for a

test document, the advantages and drawbacks of each work, and we

14

will also review the result for each work in order to compare them with

our proposed method result.

Then we will overview some background theory in Chapter 3, where

firstly we will explain the theory around the language models,

especially the one that is used as basic in our method, then we will

illustrate the scoring function that will be used to effectively find the

best effective features in the language model. Also this chapter

overviews some methods used in training and testing process.

Chapter 4 describes our proposed method in details, it starts with an

overview of the whole method, supported by illustrative figures, and

algorithms, then each step of producing the enhanced language model

will be described in details, starting from parsing to produce the set of

rules, and the method used to compute the probabilities of these rules,

then describing the added syntactic, and lexical features, and how they

are involved in the language model to produce a new language model

for each author from his training document. The chapter also describes

in details how a score is computed for each rule to indicate its

efficiency. Also the classification process is included in this chapter,

and it describes the process of assigning author for a test document.

Finally the chapter illustrates assigning each type of rules a weight

which reflects how each type of features participates in classification

process.

Chapter 5 views the data set that used to test the proposed method in

Chapter 4, and the experimentation that was done on this data, also it

describes the metrics that are used to estimate the efficiency of the

proposed method, ending with the results obtained with our method,

15

these results are described using several tables, and graphs, and

compared with other methods which worked in author attribution field.

Finally the conclusion of the research was included in Chapter 6, which

summarizes the research, remarks, and some notes around the work.

Also a future work section was included to suggest some

recommendations to be handled in future.

16

Chapter 2

RELATED WORKS

There are many researches were done in author attribution field, we are

going to focus on them starting from traditional methods, which based

on a machine learning algorithm with some selected features to classify

a document. Because the set of features that can be used in author

attribution is very large, feature selection methods will be proposed,

and then in other section we will discuss some advanced methods used

to solve the problem.

2.1 Machine Learning-Based Methods

Most of works, which have been done in this field, used a machine

learning algorithm to discriminate the author of a given text using some

set of features. There are many types of features -as we described

before- that can be used in author attribution problem, we will

overview some of researches that worked in author attribution field,

focusing on the used features, classification method, and the results.

Carole [1] used a set of lexical features, as words frequency, text

length, punctuation count, and average word length. Also he augmented

the features with part of speech tagging (POST), which is a syntactic

feature. This set of features was used to generate a linear discriminate

function, which maximizes the difference between authors documents

groups, so the coefficients of this function can be used to predict the

group membership for a given test document. He considered 10

documents for each author, where each document is related to a

predefined topic. The advantage of his method is that it achieved

17

accuracy of about 92%. However using lexical features can not

efficiently describe author’s style, even if it was augmented with a

syntactic feature (POST), since POST is a simple syntactic feature that

describes the type (syntax) of a single word, and can not reflect the

syntax of a phrase.

Another traditional method was proposed by Nikos et al [16], they

gathered a set of 85 features. The features are classified as follows:

lemma-related features that capture the occurrence of specific word

lemmas, these lemmas are selected as their low “order of occurrence”

for at least one author, and high “order of occurrence” for at least one

other author, also a new type of features is verbal features which

captures how an author uses verb forms. They used POST feature

which capture the frequency of occurrence of grammatical category of

a word. They also implemented many lexical features to capture word

length, sentence length, punctuation marks frequency, and the

frequency of occurrence of the most common words expressing

negation. These 85 features are supplied to three classifiers: the first

classifier is a multi-layer perceptron network, the second is Radial

Basis Function (RBF), which is a special type of neural network that

uses radial basis function in hidden layer, and the last one is Self-

organized map (SOM). They suggested that the accuracy depends on

model deployment, i.e. the parameters that used to configure the

classifiers, but in all classifiers accuracy did not exceed 85%. Using too

many features can affect the performance of the classifiers, since they

may contain unneeded information that can decreases classifiers

performance, also the model depends on optimization the parameters to

obtain a good result, usually estimating such parameters is complex,

and needs more computation and optimization techniques.

18

Another method [15] applied the neural networks, and Tilburg in

Memory Based Learner (TiMBL), which is a more advanced version of

K Nearest Neighbor (KNN) algorithm, over a different set of features,

some of the features are lexical features such as word length, n-grams,

type-token ratio, hapax legomenon, and common word frequencies.

The syntactic features are POST extracted for each token in the text,

and the rewrite rules which detect some structure of a sentence such as

subject, and objects. They used a shallow text analysis to extract the

syntactic features. The best achieved accuracy from the two classifiers

was about 72%. Even that the method combined lexical and syntactic

features, it did not achieve good performance, the reason of that

returned to the output of the shallow text analyzer since it detect some

special type of words (as subject, and object), or because there are no

optimization between lexical, and syntactic feature, so that poor

features dominate the descriptive features.

Another machine learning method in the field of author attribution

problem was proposed by Jochim et al [17]. They used a Support

Vector Machine (SVM) classifier over a set of features extracted from

various documents to identify the author of a given document. The

point in their research is that SVM classifier can handle a very large set

of features in a better way compared with other classifiers, but also the

precision of their method ranged from 60-80%. The disadvantage of

this method is the using of too many features with SVM classifier,

since features have not same efficiency for author attribution problem.

Luyckx [18] also used the SVM classifier in author attribution, but

instead of building a classifier for each author, he used a multi-class

SVM, that can classify an author simultaneously. He used three types

19

of features, characters feature represented by character-level n-grams,

lexical features represented by word n-grams, and functional words,

and the syntactic feature represented by using POST. He suggested that

the precision of such a classifier depends on its configuration; this is a

disadvantage when using such a method, since adjusting parameter for

a classifier is not a trivial problem, and requires complex estimations,

but on the other hand the multi-class SVM can deal with small and

large datasets very well.

Filiz et al [8] built and tested four different machine learning

algorithms, each was supplied by a feature vector which is combined

from n-grams and additional features, they used bi-gram (2-gram), and

tri-gram (3-gram), counting the occurrence of each gram to be included

in a feature vector. The additional features include statistical features as

sentence length, word length, also they included vocabulary richness

features, as type-token ratio, words occur once (hapax legomenon), and

words occur twice (hapax dislegomenon), the feature vector also

includes POST for each word in the text, and function words. We can

note that this research (as many others) combines different types of

features to help classifying a test document correctly, because of the

high number of features they categorize features to a four sets, and test

each set of features independently by applying the SVM, KNN,

Random Forest, and multi layer perceptron classifiers. Each set of

features obtains a different results on different classifier, but the overall

result ranged from 60% – 84%. As we said before that using n-grams

has two drawbacks, first there is a problem in defining the best value

for n, and we can notice that this method tried to use multi values for n,

in order to find the best solution, second drawback is that n-grams may

capture content specific information, and we search for stylistic

20

information for author attribution problem. Also there is no difference

between the used features, they equally participate in classification

process.

The basic unit in traditional n-gram models is a word, Fuchon et al [10]

proposed a new method based on character level n-gram model, in

which the character is the basic unit, the details will be the same as

“word based” n-gram model, they suggested that using a character level

n-gram will discover useful inter-word, and inter-phrase features. The

advantage of this method that it avoids the need of explicit word

segmentation, so there is no need to parse sentences, and the method

can be used to detect any language. The approach is to learn a separate

language model (character level n-gram) for each author, which is

trained from author’s documents. In classification an unknown

document will be supplied to each language model, to evaluate the

likelihood, and pick the winning author. They evaluated the accuracy

for three different languages data sets, and achieved a result between

70% and 90%. Character based n-gram model still inherits the problem

of identifying the best value for n, also the representation of this model

leads to high dimensionality space, which requires complex

computations, and with the probability of capturing redundant

information.

Another variation in using n-gram model was applied in [19], in which

byte n-grams are used to build a language model for each author.

Clearly to extract such grams the text is viewed as a sequence of bytes,

then using this to build a profile for each author to be the set of most

frequent n-grams, with their normalized frequencies generated from

training documents. The classification will be the same as previous by

21

using the likelihood classification. Viewing text as a sequence of bytes

ignores neither content specific information, nor stylistic based

information, and can be considered less effective choice for the author

attribution problem.

Ouamour et al [20] also built a classifier based on SVM algorithm.

They used a Sequential Minimal Optimization method to speed up the

training of the SVM. The algorithm was trained using several features;

characters, character n-grams, words, word n-grams and rare words.

The system was trained using only two Arabic documents for each

author, and the testing was made using only one document. Using

different combinations of features, the best achieved accuracy was

80%. This method used only lexical features in order to classify a

document; this may describe the obtained result. Also the used data set

is very small, which affected the result badly.

Another method that investigated the author attribution problem over

the Arabic texts was proposed in [21]. They introduced a set of Arabic

function words to be used as features in author attribution. This set of

words was used by a hybrid classifier, which used an Evolutionary

Algorithm, and a Linear Discriminant Analysis classifier, where the

role of the Evolutionary Algorithm is to find a subset of the function

words that are used to train the Linear Discriminant Analysis. The

system did not exceed a 93% of accuracy. The drawback of the method

is that it depended only on function words to discover authors, and

these function words were identified to reflect the semantic of English

function words from previous researches.

To achieve a good results, some methods tried to use different types of

features to capture authors’ style. Abbasi et al [22] used a set of 300

22

features of types; lexical, syntactic, structural, and content-specific

features. The structural features measure the format of online texts

written by authors, as font color, font size, embedded images, and

hyperlinks. They tested these large set of features using SVM classifier,

over online texts written both in Arabic, and English. The classifier

reached 97% of accuracy when it was tested over English texts, while

for Arabic texts it reached 94% of accuracy. Merging different types of

features can effectively capture authors’ styles, but the method did not

perform well for Arabic texts, this may returned to the huge number of

features that were used in classification, could not be discriminated in

Arabic language.

Machine learning-based methods achieve acceptable results in author

attribution problem, but we can notice that almost all methods did not

benefit of efficient syntactic features as sentence structure, although

this type of features considered to describe author’s style, this maybe

because of the hard implementation of such features in machine

learning algorithms, since the set of such features is large. Even

methods that combined syntactic features, with other features, assumed

that all features have the same importance for author attribution

problem.

2.2 Features Selection Methods

As you can see in the previous researches, there are many features that

can be used in author attribution problem, this can be helpful, but in

many cases the huge amount of features may decrease the performance

of a classifier, in case of computing unimportant features. Because of

this many researches were performed in order to study the best features

that can be used in author attribution problem, one of these researches

23

was proposed by Jiexun et al [23], in which a Genetic algorithm [24]

was used to identify the best features, where each gene represents a

single feature with value 0 or 1 to indicates wither a feature is selected

or not, the fitness function is defined as the accuracy of the

corresponding classifier, they implemented an SVM algorithm to

classify an unknown text, the algorithm shows that chosen 130 features

from 270 can increase the results. The problem of this method is that

one can not capture all stylometric features, they may be very large and

require complex estimation to detect best features, also the system

depends on a single classifier (SVM) to judge the importance of a

feature, and last the syntactic features did not involved in the method,

because it is hard to represent such features using Genetic Algorithms.

Another approach to select best features was proposed in [25], in which

features will be selected according to their predictive values

automatically, this value is calculated using chi square metric (X
2
)

which estimates the expected and observed frequency for every feature

to identify features that are able to discriminate between authors, the

algorithm uses combination of lexical features, plus syntactic features

extracted by a parser to produce POST. In classification two different

machine learning algorithms were used TiMBL, and SOM. The

research did not compare the result of the classifier before and after

using chi square metric over features.

2.3 Other Methods

Koppel et al [26] tried to work with a new approach depending on

similarity measurements, rather than machine learning approach, they

investigated the author attribution problem for large candidates (10,000

authors) using a similarity-based classification derived from

24

information retrieving theory. They represented the text as a vector that

includes the frequencies of each 4-gram characters, including

punctuation, numerals, and sundry, to find an author from large set of

authors, they used a similarity based method; especially they use a

cosine similarity [27], which is a common metric used in information

retrieving methods. This similarity-based classification achieved a

precision of about 46%, so they improved the procedure by repeatedly

selecting top k documents, then computing the score for each author

depending on the top k set, after some time the algorithm returns the

author that has maximum score. Hence the idea is to check if a given

author proves to be most similar to the test document for many

different randomly selected feature sets of fixed size. The drawback of

this method is to restrict the features on n-grams only, and as we said

before n-grams can not capture the writing style. The vector that

represents the text document must contain more descriptive features

that can efficiently capture authors’ styles.

In author attribution problem, the dataset is a set of text documents, this

encourages the researchers to extract more than lexical features from

these texts, so another approach was raised in author attribution

problem by trying to incorporate language models in order to classify

an unknown text; this approach assumes that each author has writing

characteristics that can be captured using a language model. Sindh et al

[14] tried to use a more advanced language model in author attribution

problem, they applied the Probabilistic Context Free Grammar (PCFG)

language model, by training a language model for each author from his

known text documents, then for a test document they computed the

likelihood for each language model related to each author, so that the

test document will be assigned to the author whose language model

25

gives the highest likelihood score. The method achieved a good result

in the range of 87-95%. PCFG language model, describes the structure

of the sentences that are used in text, such a description is considered as

a syntactic feature. Syntactic features obtain better result in author

attribution field if it combined with another features, the research did

not use any other features just depends on the syntactic features

expressed by PCFG model, even with not using any other features the

method obtained a good result, this is returned to the strength of PCFG

model in expressing the structure of the sentences in the text, it seems

that PCFG language model is a good descriptor of syntactic features.

Stochastic language models (as PCFG), contain a syntactic features,

which can be used in author attribution, and even more, such models

contain rich implicit lexical features, which can with the syntactic

features efficiently capture authors styles, so that incorporating lexical

features on the language models leads to a rich language model that can

efficiently be used in author attribution problem.

Many of the previous works were tested over documents written in

English language [8, 1]; some used Greek language [17,10], Belgian

language [15], Germany language [17], and Arabic language [20-22].

In this thesis we will focus on applying an enhanced language model

over Arabic texts, the language model will express the syntactic

features in a more efficient way, plus providing more other features, to

help solving the problem of detecting the author of an unknown

document.

26

Chapter 3

THEORETICAL BACKGROUND

In this chapter we will overview the theory beyond some techniques

that are used in the research. We will start describing the PCFG model,

since that our enhanced method depends on it. Then an overview about

the chi square metric will be proposed, since that the proposed method

use the chi square function to discover the most efficient rules in PCFG

language model. The chapter describes the Genetic Algorithm, and how

it can be used to find a best solution for a specific problem. The

Genetic algorithm is used to find the best weights between features in

the enhanced language model. Finally we will overview the Leave-

One-Out method, which is used to train and test the proposed language

model.

3.1 Probabilistic Context Free Grammar

Context-free grammar (CFG) [13] is considered as the most effective

grammar formalization for describing language syntax; it is adopted for

language description. CFG is defined as a tuple G= {Σ, N, S, R}, where

Σ is a set of terminal symbols which are symbols (words) actually seen

in the sentences, N is a set of non-terminal symbols each of which

points to further production rules, these two sets are disjoint, S ϵ N is

the start symbol, and R is a finite set of production rules that define

how a string of terminal and non-terminal symbols can be immediately

produced from a non-terminal symbol, it has the form , where

A is a non-terminal , α is a sequence of terminal and non-terminal

27

symbols. So in CFG grammar a phrase can be viewed as a sequence of

terminals.

All CFG rules contain only one symbol on the left hand side, each of

which states that a given symbol can be replaced by a given sequence

of symbols (on the right side), thus the “context” in which a symbol on

the left hand side of a rule occurs is unimportant.

CFG provides a simple and mathematically precise mechanism for

describing the methods by which phrases in some natural language are

built from smaller blocks, capturing the "block structure" of sentences

in a natural way. CFG can exactly describe the basic recursive structure

of sentences, the way in which clauses nest inside other clauses, and the

way in which lists of adjectives and adverbs are swallowed by nouns

and verbs. For example the sentence (تطلع الشمس من الشرق) is built from

three smaller phrases blocks ((من الشرق)(الشمس) (تطلع)). This phrase

structure is represented by production rules, where each production rule

can be viewed in the form non-terminal0 → non-terminal1… non-

terminaln , or non-terminal0 → terminal1, Figure 3.1 shows the set of

rules that represent the previous sentence, it is clear that the first rule

represents that this sentence is a verbal phrase (VP), where this verbal

phrase consists of other three blocks, the first is a verb (VBP), the

second is a noun phrase (NP), and the last is prepositional phrase (PP),

and so on every rule describes a smaller block, until describing the

basic blocks in the sentence, which are the actual words.

28

Another way to represent a sentence in CFG is to use a tree structure. A

tree consists of labeled nodes with arcs indicates a parent-child

relationship. Trees start from root node, and in CFG it always the S

symbol, every node (except the root) has only one parent node, and

zero or more child nodes. A node with no child is called leaf node.

Figure 3.2 shows a tree structure represents the grammar for the

sentence (تطلع الشمس من الشرق), this tree captures the same structure

captured by the production rules shown in Figure 3.1. Trees are more

readable by humans than the production rules, since trees visualize the

structure of a sentence, while capturing the same information about the

grammar. Figure 3.2 shows the following structural analysis: there is a

sentence S that is a verbal phrase (VP), the sentence consists of (VBP)

followed by (NP) and (PP), the (VBP) (present verb) is the verb (تطلع),

and the noun phrase (NP), is a (DTNN) which is a noun (الشمس), the

(PP) (propositional phrase) consists of IN (من), and NP which is a

DTNN noun (الشرق).

S → VP

VP →VBP NP PP

VBP → تطلع

NP → DTNN

DTNN → الشمس

PP → IN NP

IN → من

NP → DTNN

DTNN → الشرق

Figure 3.1: The rules generated from the sentence (تطلع الشمس من الشرق), where

each rule describes a block structure of the sentence.

29

CFG is considered a general formalization to describe language syntax,

the most grammar formalization are derived from CFG, one of

grammar formalization is the Probabilistic Context Free Grammar

(PCFG), which is a probabilistic version of CFG in which each

production rule is assigned a probability. These probabilities are

required to sum up to 1.0 for each non-terminal, thus PCFG inherits all

CFG’s characteristics, and augments each rule with a probability, so we

can view PCFG as a tuple G = {Σ, N, S, R, P}, where P is a list of

probabilities, each probability is assigned to one of rules in R, and

defines the likelihood with which this rule is used in generating a

sentence. For the previous example (Figures 3.1, and 3.2), the

probability for the first rule in Figure 3.1 (S → VP) is one, while the

probability for the rule (DTNN → الشمس) is 0.5 since there are two rules

start by DTNN terminal. In practice the set of rules extracted from a

Figure 3.2: A tree representation of the sentence (تطلع الشمس من الشرق), where every

node represent terminal, or non-terminal, and the arcs represent a parent-child

relationship

30

text will be large, so that the rules will have diversity in their

probabilities values.

After parsing PCFG grammar G, and computing a probability for each

rule from the training data. Probability of generating a string, given a

grammar G, is the product of the probabilities of productions taken at

each branch of its parsing tree; thus some derivations are more

consistent with the grammar than others.

For example if we want to compute the probability of generating the

sentence S = (تطلع الشمس من الشرق). Given that the production rules

generated by parsing the sentence shown in Figure 3.3. Suppose then

we have two PCFG models, each has its own probabilities for many

rules, including the sentence rules as shown in Figure 3.3, then the

probability of the model M1 to generate the sentence S is given by:

And so the probability of the model M2 to generate the sentence S is

given by:

It is clear that the language model M1 has a high probability to produce

the sentence S, than the second language model M2, in other point of

view the derivation of sentence S is more consistent with language

model M1, than M2.

31

Table 3.1: The rules generated from the sentence S = (تطلع الشمس من الشرق),

with probabilities for each rule in two different PCFG models (M1, and M2)

Production Rules of the Sentence

S = (تطلع الشمس من الشرق)

PCFG Model

M1

PCFG Model

M2

S → VP

VP →VBP NP PP

VBP → تطلع

NP → DTNN

DTNN → الشمس

PP → IN NP

IN → من

NP → DTNN

DTNN → الشرق

0.6

0.25

0.05

0.3

0.01

0.7

0.12

0.4

0.02

0.45

0.32

0.07

0.25

0.04

0.55

0.21

0.65

0.01

3.2 Chi-Square Feature Selection

A main problem in author attribution is the multiplicity of features,

there are many features that can be used to identify the author, and

because of this we need a powerful technique to select the best features,

which are the most informative.

In our algorithm we will have many rules produced from authors’

documents, we need the rules that are most efficient to discriminate

authors, a popular feature selection method is chi-square (X
2
). In

statistics, the X
2
 test is applied to test the independency of two events,

where two events A and B are defined to be independent if P(AB) =

P(A)P(B) or, equivalently, P(A|B) = P(A) and P(B|A) = P(B) [27]. In

classification problems we can view the two events as a feature t and a

class c, so that the X
2
 score measures the lack of independency between

feature t and class c.

32

In our algorithm we will have a rule r and a class c, and we want to

know the dependency of each rule and the class (author).

One way to compute X
2
 is by using the two-way contingency table [28]

of a rule r and a author c, the X
2
 score between rule r, and author c, is

defined to be:

 …………… (3.1)

where A is the number of times r and c co-occurs, B is the number of

times the rule r occurs without c, C is the number of times c occurs

without r, D is the number of times neither c nor r occurs, and N is the

total number of documents

If rule r is independent of author c, then the X
2
 score will be zero. The

computation of X
2
 scores has a quadratic complexity, similar to mutual

information (MI), and information gain (IG). A major difference

between X
2
 and MI is that X

2
 is a normalized value; hence X

2
 values are

comparable across terms for same category.

By using X
2

we will have a score for every author’s rule, the score will

denote the relation of the rule and the corresponding author, so that a

rule with small value score denotes that the rule is general and not a

discriminate rule for that author, while a high value score denotes that

the rule is specific rule that captures the authors style.

3.3 Genetic Algorithm

Genetic algorithm [24] is a machine learning algorithm that mimics the

process of natural evolution. It is a search algorithm that routinely used

to generate useful solutions to optimization a search problems.

33

It searches for best solution (hypothesis) from a set of candidate

solutions (hypotheses); the best solution is the one that optimizes a

predefined numerical function called fitness function.

A hypothesis is encoded as a chromosome (called individual), which

reflects a candidate solution to an optimization problem, the

chromosomes evolved toward better hypotheses. The evolution

occurred in generations starting from a population of randomly

generated chromosomes, where in each generation the fitness of every

chromosome in the population is evaluated, so that some chromosomes

are selected, and modified to form a new population, which will be

used in the next iteration of the algorithm. The algorithm will continue

following this process, until a termination criterion has occurred.

Usually the termination condition is reaching a satisfactory fitness

value, in other problems the algorithm may terminates due to reaching

a maximum number of generations.

A simple Genetic algorithm is viewed by Algorithm 3.1, where in first

step the algorithm choose an initial population of individuals, these

individuals are usually randomly generated, the population size

(number of chromosomes in population) is an application dependent

value, but typically a population contains several hundreds or

thousands of individuals. Then fitness value is evaluated for each

chromosome in the population.

The next step tries to choose some individual from the current

population based on their fitness value, then based on the selected

individuals the algorithm generates a new population of individuals

through genetic operators. The two most common operations used by

genetic algorithms, are crossover and mutation.

34

Purpose: Finding best solution for a specific problem based on fitness function

Input: Fitness function that judge the efficiency of each individual

Output: An individual that represent a solution to the problem.

Procedure:

1 Begin

2 Choose the initial population of individuals

3 Evaluate the fitness of each individual in that population

4 Repeat on this generation until termination

5 Select the best-fit individuals for reproduction

6 Create new individuals using Genetic operators

7 Evaluate the individual fitness of new individuals

8 Replace least-fit population with new individuals

9 Return the best-fit individual as a solution.

10 End

Figure 3.3: Simple Genetic Algorithm procedure

Crossover operation takes two solutions (parents), and produces two

new individuals from it, by copying characteristics from the parent

individuals, while the mutation operation produces small random

changes to individual by choosing a single characteristic at random and

change its value. Mutation is often performed after crossover.

Following this process a new solution that shares many characteristic of

its parents is created. For each new individual, new parents are

selected. The process continues until a new population of solutions of

appropriate size is generated. This generational process is repeated until

a termination condition has been reached.

3.4 Leave-One-Out Method

A machine learning system depends on data samples, and usually these

samples are categorized in two sets, the first is the training samples set,

http://en.wikipedia.org/wiki/Breed

35

which is used by the system in learning phase, while the other is testing

samples set, which will be used to validate the system.

It is known that training set must be of a reasonable size, so that it can

produce a representative sample of the true target function [24]. But in

some systems the training samples may be not available in the required

size.

The problem of lacking in data samples is addressed by cross-

validation method, which starts by partitioning data into

complementary subsets, performing the analysis (learning) on the

training set, and validating the analysis on the testing set. Then multiple

rounds of cross-validation are performed using different partitions, and

the validation results are averaged over the rounds.

The purpose of such process is to overcome the problem of overfitting.

A learning algorithm is said to be overfited if it is more accurate in

fitting known data, but less accurate in predicting new data. The

purpose of such process is to predict the fit of a model to validation set

when an explicit validation set is not available. Overfitting is

particularly likely to happen when the size of the training data set is

small.

There are many types of cross validation method, one is the Leave-

One-Out method [29], where for a data set (training and testing) of size

N, the training is performed using N-1 samples, and the test is

performed using the excluded sample. If this is misclassified, an error is

counted.

36

This process is repeated N times, each time excluding a different

sample. The total number of errors leads to the estimation of the

classification error probability.

So that training is achieved using, basically, all samples, and at the

same time independence between training and test sets is maintained

(because data used in training are not used in testing). But the

disadvantage of the Leave-One-Out method is it needs many

computations, which leads to high computational complexity.

37

Chapter 4

PROPOSED METHOD

4.1 Overview

The PCFG grammar describes the language syntax, by capturing the

structure of sentences, but this alone can not be used to distinguish the

author of an unknown text [14], since it focuses on grammar rules and

their probabilities only, so our contribution is to extend the PCFG

language model in order to capture additional features that can increase

the efficiency of language models in author attribution problem, as we

saw in all previous works, they used some basic features as lexical

features to distinguish between authors [1,10], these features proved to

be informative [15], we will try to involve these features in PCFG

language model.

Recall that we already know the words in each sentence (terminals) and

their types (non-terminals) from the PCFG language model, using this

we will capture some lexical features, this will be handled by adding a

new set PT in the grammar G, which contains the probabilities for each

terminal.

Also a second set PN will be added to the grammar G, which indicates

the probability for each non-terminal, for example the probability of

verb will be P(V), this set will be fixed size since that the set of non-

terminals is predefined, PCFG will not consider any punctuation marks

in estimation rules or probabilities, however these are considered as

major feature to capture the style of a text [30], so we will add a new

38

third set PU to grammar G, which indicates the probability of each

punctuation mark.

The other extension to PCFG model, is to compute weights for each

rule probability in set R, these weights will be computed using chi-

square score (X
2
). So the extended weighted PCFG model (we will call

it XPCFG) tuple will be:

G = {Σ, N, S, R, P, U, X
2
, PT, PN, PU} …………… (4.1)

where X
2

is the set of weights for each rule in R, PT is probabilities for

each terminal ϵ Σ, PN is the probabilities of each non-terminal ϵ N, U is

the set of punctuation marks, and PU is probabilities for each

punctuation mark ϵ U.

Our algorithm will generate an XPCFG model for each author, starting

from set of training documents for each author, and tries to extract the

grammar from theses documents for each author; this is done using

parsing application. After the grammar has been formalized by

generating production rules for each author, a probability will be

computed for each production rule, to build a complete PCFG grammar

for each author, then a score will be computed for each generated rule

to compute the dependency between this rule and its corresponding

author, this will be accomplished by computing X
2
 score for each rule,

hence producing a full weighted PCFG grammar. Also the probabilities

of terminals, non-terminals, and punctuation marks will be computed in

this step to produce the new XPCFG language model for each author

from his training documents. Figure 4.1 illustrates the process of

generating author’s XPCFG language model, where the input is a set of

39

training documents, which are parsed to generate set of production

rules as in Figure 3.1, these rules contain the information about

terminal, non-terminals, and punctuation marks, so that the next step is

to compute the probabilities for the rules, and the other features (we

called them lexical features), you can note that no extra tools is needed

to extract lexical features, because the information is contained in

production rules, so we only make use of them by computing

probabilities for lexical features. As we said the chi-square score is

computed for each production rule.

In Figure 4.2 we illustrate the process of finding best weights for the

different features. Because we use different types of features,

grammatical features represented by PCFG rules, and lexical features

represented by probabilities of terminals, non-terminals, and

punctuation marks (actually non-terminals is considered a syntactic

feature), so that a Genetic algorithm will be used to find the best

weights for the lexical features and grammatical features, as shown in

Figure 4.2, the algorithm uses a new corpus called Held-out data set, it

is used only for the purpose of finding the best weights between

Figure 4.1: The process of generating the enhanced language model XPCFG for a

specific author, using a set of training documents that are belongs to the author.

Parser

Rules

Probabilities

X
2

Score

Lexical

Probabilities

Author’s

XPCFG

Model

Training

Documents

40

different features for a specific author. The inputs for Genetic algorithm

are the Held-out data set, author’s XPCFG model, and a fitness

function, the output is the best weights between features for that author,

the values of weights depends on maximizing the classification

accuracy for documents in Held-out set.

Finally in the classification process (shown in Figure 4.3), a test

document is passed to classifier, with all authors’ models, and optimum

weights for each author. The classifier estimates a score between the

test document and each author’s language model, and by using weights

found by Genetic algorithm, so that the test document is assigned to

author who has the maximum score.

Figure 4.2: Estimation of optimum weights between different features in XPCFG

model for a specific author.

Best

Weights

Genetic

Algorithm

Author’s

XPCFG

Model

Held-out

Data set

41

Figure 4.3: Classification a test document, the classifier inputs are a test document,

authors XPCFG models, and weights for all authors.

4.2 Parsing

As shown in Figure 4.1 the first step in training an XPCFG language

model for a specific author is parsing his training documents. Parsing is

the process of analyzing a text, made of a sequence of tokens (words),

to determine its grammatical structure with respect to a given formal

grammar [31], so that any document in training, testing, or Held-out

corpuses is parsed before it can be used.

We use a probabilistic parser (also called statistical parser), which is a

parser that uses knowledge of language gained from previously hand-

parsed sentences, so that to produce the most likely analysis of new

sentences. The result of the parsing process is a set of grammatical

rules, as shown previously in Figure 3.1.

4.3 Training

In training phase as shown in Figure 4.4 we attend to produce a full

XPCFG language model for each author, the language model includes

the PCFG rules (produced in parsing phase), with their probabilities

Best

Weights

Classifier

Author’s

XPCFG

Model

Test

Document

s

Candidate

Author

http://en.wikipedia.org/wiki/Lexical_analysis#Token
http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/Formal_grammar

42

Purpose: Produce a complete XPCFG model for a specific author from his

training documents

Input: Training document for a specific author

Output: Complete XPCFG language model for the author

Procedure:

1 Begin

2 For each training document j

3 Parse document dj to generate the set of rules R

4 Compute rules probabilities P

5 Compute terminals probabilities PT

6 Compute non-terminals probabilities PN

7 Compute punctuation marks probabilities PU

8 End loop

9
Compute the average probabilities for P, PT, PN, and PU , over all

training documents

10 Compute the X
2
 score for each rule in R

11 Return XPCFG = {Σ, N, S, R, P, U, X
2
, PT, PN, PU}

12 End

Figure 4.4: Training XPCFG language model

 and scores, and three lists of terminals, non-terminals, and punctuation

marks that used in training documents, with their probabilities. The

following sections overview the training steps in details.

4.3.1 PCFG Rules Probabilities

After parsing each document in the training data set, and producing the

rules, we want to compute a probability for each rule to produce a

PCFG grammar. This is shown in Algorithm 4.1 step 4. Remember that

a separate language model will be generated for each author, so that for

each author’s document we will find the probability for each rule that

appears in the document, then producing a complete grammar by

averaging the probabilities for each rule. Starting from first document

for a specific author, we compute the probability for each rule in each

43

training document which belongs to the corresponding author by

counting. For example let the probability for rule is given by

 , then this probability will be computed using the following

equation:

 …………… (4.2)

After computing the probability for each rule in each training document

for a specific author, we will generate a PCFG language grammar for

that author. The set of rules will be gathered from each training

document, and the probability for each rule will be the average

probability for the rule in all training documents (Step 9 in Algorithm

4.1). Given is the number of training documents for a specific author,

and is the probability of rule in th
 training

document for that author, then the average probability is

given by:

 …………… (4.3)

Following this procedure each author language model will contains non

duplicated rules, i.e. a rule will be found only once in author’s language

model, and has a probability reflects the averaged probability of that

rule in all training documents that belong to the corresponding author.

Recall that when rules are generated from training documents by the

parser, the right side of a rule contains either non-terminals, or

terminals, clearly the first set of rules will be non-leaf rules in parsing

tree, while the other set (terminals rules) will be leaf rules in the

parsing tree (see Figure 3.2), in a traditional PCFG language model

44

there is no difference when dealing with these sets of rules, but in our

proposed model (XPCFG), we separate the PCFG rules in two different

sets, the first is non-terminal rules, and the other is the terminal rules,

for example in Figures 3.1 and 3.2 the rules S → VP, VP →VBP NP

PP, NP → DTNN, PP → IN NP, and NP → DTNN are categorized as

non-terminal rules, while the rules VBP → تطلع, DTNN → الشمس, IN →

 are categorized as terminal rules. Returning to الشرق → and DTNN ,من

Equation 4.1 the set R will be divided to two sets, and so the

probabilities P. The goal of this categorization of the rules is to

measure the efficiency of each set of rules (non-terminal and terminal

rules) in the classification process.

Note that for the simplicity of notation we did not mention this

categorization of rules in the previous equation, but you will see the

purpose of this method in Section 4.5.

4.3.2 Non-terminals Probabilities

Non-terminals are considered as one of effective syntactic features in

author attribution problem [15], so that we extend the PCFG model by

incorporate non-terminals behind sentences structure, to allow the

model capturing more detailed syntactic features, this is done by adding

a new list to language model so that capture the probabilities of non-

terminals.

Note that the set of non-terminals N is a fixed size set, since non-

terminals are predefined by the parser, so that for each author’s

language model the set N will contain the same non-terminals, but with

different probabilities. To compute probabilities of non-terminals PN

for a specific author, we use the PCFG rules which are already have

45

been generated, and their probabilities were computed (Section 4.3.1),

we here focus on the rules that contain non-terminals, so that for a

specific author a non-terminal probability will be computed for each

author’s training document, then a final averaged probability will be

recorded in PN list in the XPCFG language model. Finding the

probability of a non-terminal in one of training documents, is done by

scanning the PCFG rules produced from this training document, then

counting the occurrence of this non-terminal in the rules, this process is

the step 6 in Algorithm 4.1. So for a non-terminal nt, in one of training

documents (belongs to specific author), that contains m non-terminals

in all rules, the probability of nt is given by:

 …………… (4.4)

Note that m is the total number of non-terminals in a specific training

document, so that when we said the non-terminals are fixed, we mean

they are known, but how many they appear in a document is captured

by m, and depends on the size and the grammar used in writing this

document.

Equation 4.4 is used to compute the probability for each non-terminal

in a single training document, following this process for other training

documents that belong to same author, will produce a set of

probabilities for each single non-terminal, and for a specific author we

want a final probability, which will be computed by averaging the

probabilities of that non-terminal over author’s training documents

(Step 9 in Algorithm 4.1), as in Equation 4.3 the average of a non-

terminal nt is the sum of this non-terminal probabilities in training

documents, divided by number of documents.

46

4.3.3 Terminals Probabilities

In PCFG model the set of terminals Σ contains the actual words used by

a specific author, it is clear that words used by authors are a topic

dependent feature, and this type of features can not alone successfully

classify an unknown text, but the purpose from using terminals is to

find the function words, which are considered as an effective feature in

author attribution problem [32], as we later defined the functional

words as words that have little lexical meaning but server to express

grammatical relationships with other words, there are many researches

[33] tried to find these words, unfortunately all of them works in

English language, and as we focus here on author attribution of Arabic

texts, so that by using terminals we try to automatically find functional

words. Returning to computing terminals probabilities, we follow the

process used when computing the non-terminals probabilities in

Section 4.3.2, as we previously started from PCFG rules to find non-

terminals, we also here start from the set of PCFG rules, that are

generated from a training document for a specific author, using these

rules we can simply count each terminal occurrences, and dividing it by

total number of terminals in this training document, note here the

number of terminals is not fixed, it depends on the size of training

document.

As we did before a final averaged probability of a terminal will be

computed by averaging the probabilities of this terminal among the

training documents, by this we will have a complete terminals

probabilities list PT produced for each author from his own training

documents

47

4.3.4 Punctuation Marks Probabilities

Many researches were done in author attribution field proved that

punctuation marks can effectively discriminate authors [30], because of

this a new extension to PCFG language model is done, by adding a list

of punctuation marks probabilities. Punctuation marks also generated

by PCFG model rules, and considered as terminals, we decide to make

a new probabilities list for punctuation marks for two reasons, first we

want to find how they can affect the classifier, and the other reason

because we want to find a reliable probability of each punctuation mark

in a training document, i.e. if punctuation marks is treated as terminals

then the probability of a punctuation mark, will be its occurrence in the

document divided by the total number of terminals in this document,

which will give a very small probabilities for punctuation marks since

they occur not very much, and the probability of terminals will

overwhelm them, so the reliable probability of a punctuation mark in a

training document is the occurrence of this punctuation mark, divided

by the total number of punctuation marks in the document.

After computing the probabilities of each punctuation mark in training

documents (belong to specific author), a final probability is computed

by averaging theses probabilities, so that the list PU will contain the

probabilities for punctuation marks used by a specific author, and

extracted form his own training documents.

4.3.5 Chi-Square Score (X
2
)

After computing the average probability of each rule extracted from

training documents, the proposed algorithm in Algorithm 4.1, computes

a score for each rule (Step 10), each score measures the dependency

between a rule and its corresponding author, in other word the score

48

function will discover the most effective rules, because there are some

rules considered general rules, as they appears in all authors texts, and

can not be considered a fingerprint for author’s style, in other hand

there are rules that will get a high score because they are capture

specific style for different authors, the computation of score is done

using Equation 3.1, from the equation we can note that the score will be

high if a rule occurs fewer times in training documents, thus the rule is

a highly discriminate rule, and can capture specific writing style for the

corresponding author, in the opposite side if a rule occurs in virtually

all training documents, then it will be assigned a low value, thus it is a

general writing rule and does not capture specific writing style for

authors.

The benefit of finding a score for each rule in the XPCFG model, is that

the model automatically finds the best rules that can discriminate

authors, and without knowing the structure of the written language or

the language grammar, so that the XPCFG is a language-free model,

that has the ability to find the author’s style without knowing the

structure of the language used by authors to write documents.

So by computing chi-square score for each rule, we will produce the list

X
2
 in grammar G, which contains the score for each rule in R. Thus we

have now formed the enhanced PCFG model described by Equation

4.1, G = {Σ, N, S, R, P, U, X
2
, PT, PN, PU}. Remember that the language

model will be formed for each author, from his own training

documents, doing this we can view our algorithm as a profile based

attribution method, since each author has its own language model.

49

4.4 Classification

Since we have trained a separate language model for each author, by

computing probabilities for rules, terminals, non-terminals, and

punctuation marks, we will use a probabilistic classifier to assign

author for an anonymous text. Such a classifier attempts to maximize

the probability P(x|a) for a text x to belong to a candidate author a.

Using Bayes rule [34] :

 …………… (4.5)

P(x) is the same for the test document, and so can be ignored. The prior

probability of an author P(a) is often treated as uniform across all

authors and so it can also be ignored, so that we can estimate the

probability of a test document x by finding the probability

A test document x can be viewed as a sequence of of n

independent and identically distributed observations, where the

observations are the rules, terminals, non-terminals, and punctuation

marks in the test document, to simplify the description here we will talk

about all observations as one type, then we will describe the details. By

using maximum likelihood [34], first we must specify the probability

joint density for test document x, by

 ………… (4.6)

 Then the likelihood function is

 … (4.7)

http://en.wikipedia.org/wiki/Independent_and_identically_distributed

50

Equation 4.7 estimates how an author a is likely produces a test

document x, using the probabilities computed in author’s XPCFG

language model, since the probabilities are values between 0 and 1,

multiplying them in this way will produce a very small numbers, which

can not be handled by computers, thus it is more convenient to work

with natural logarithm of the likelihood function, called the log-

likelihood, because the logarithm is a monotonically increasing

function achieves its maximum value at the same points as the

likelihood function.

The likelihood function is factored into a product of individual

probabilities. The logarithm of this product is the sum of individual

logarithms, and estimating the summation of terms is easier than

estimating the product of terms.

The likelihood score is a value between 0 and 1, so it is a probability,

but the log-likelihood is going to be negative value. So the log-

likelihood function will be:

 …………… (4.8)

To classify a test document x we use Equation 4.8, to compute the log-

likelihood () between the test document and every author’s language

model, then we assign the test document to author that has the highest

log-likelihood. To do this we first will parse the test document to

produce XPCFG language model, which will contain rules R, the set of

terminals Σ, the set of non-terminals N, and the set of punctuation

marks U, but with no probabilities for these sets.

51

In Equation 4.6 we view x as set of features , but since we

have four types of features in x, we can view test document as four

sequences of observations, where the first sequence reflects the rules in

x and denoted by , and sequences ,

 , , is terminals sequence of size B, non-

terminals sequence of size C, and punctuations marks of size D

respectively, so that (). The classifier uses Equation

4.8 to compute for each sequence, for example the log-likelihood for

terminals is given by:

 …………… (4.9)

In the same manner the previous equation is used to estimate the log-

likelihood for non-terminals , punctuation marks , and rules .

One variation in computing is that the classifier incorporates the X
2

score for each rule in the log-likelihood , this is done by simply

multiplying each rule with its corresponding X
2
 score (computed in

training phase), so that a log-likelihood for rules is given by

 …………… (4.10)

Where , is the chi-square score for i
th

 rule in the XPCFG

language model for author a. Remember that in training phase we

distinguish between two types of PCFG rules, we defined two different

sets of rules, the first contains the terminal rules, while the other

contains the non-terminal rules, so a two different log-likelihood

52

estimation for rules is considered, and the sequence is

viewed as two sequences, the log-likelihood of rules is given by ,

and , where the first is the log-likelihood of terminal rules, and the

second is the log-likelihood of non-terminal rules.

Putting all together, the classifier computes the final log-likelihood

between test document x which is represented as sequence of

observations, and author a, using the following equation:

…… (4.11)

Equation 4.11 suggests that each type of XPCFG model, participates in

classification with equal weights, we can enhance classification process

by assigning each part in Equation 4.11, a different weight which will

govern how much each part of XPCFG model (terminal rules, non-

terminal rules, terminals, non-terminals, and punctuation marks)

participates in classification process, to implement this we can rewrite

Equation 4.11 as follows:

……… (4.12)

Weights values are between 0 and 1 and all sums to one, one can test

the classifier by assigning all weights 0.2 value so we will have a same

result as Equation 4.11, these values can be set manually for testing, but

we use a machine learning algorithm to find the best values for weights,

53

so that maximizing the efficiency of the classifier, this will described in

next section.

The classifier computes the log-likelihood (Equation 4.12) for a test

document, and each candidate author’s language model, assigning the

document the author whose language model generates the highest

value. Formally speaking for a test document x, the classifier estimates

 in Equation 4.12, between the document x, and all available

authors, using their XPCFG language models, then assigning the test

document the author that has the maximum value, so that the

candidate author for an anonymous text x, is the one that has the

maximum , as shown in next equation

 …………… (4.13)

To illustrate the classification process, suppose that we have two

authors, a1 and a2, each was trained by following the previous process,

so that probabilities are computed for each rule, non-terminals,

terminals, and punctuation marks for each author. Suppose that we

have a test document x, contains only a single sentence (تطلع الشمس من

 and was parsed into rules as shown previously in Figure 3.1. In ,(الشرق

classification we want to find which author (a1 or a2) writes the

document. The probabilities for each author are shown in Table 4.1,

together with the chi-square for each PCFG rule. So that to classify the

test document x, we will compute a final log-likelihood (Equation 4.11)

for the test document and the two authors, and to find the final log-

likelihood, we need to compute the log-likelihood for terminal rules,

non-terminal rules, terminals, non-terminals, and punctuation marks

(note in this example there are no punctuation marks, so the log-

54

likelihood for punctuation marks is ignored), where each one is

computed using Equation 4.9, for example the log-likelihood for non-

terminals and author a1 will be:

Table 4.1: Probabilities for non-terminal rules, terminal rules, non-terminals, and

terminals for two different authors, with chi-square score for PCFG rules for the

two authors.

Training

Document x

Author a1 Author a2

Probability X
2
 Probability X

2

1 S → VP 0.15 0.5 0.24 0.05

2 VP →VBP NP PP 0.25 1 0.31 9

3 NP → DTNN 0.29 10 0.52 12

4 PP → IN NP 0.41 2.7 0.35
5.1

5 NP → DTNN 0.12 0.3 0.26 2.5

6 VBP → 1.6 0.26 0.91 0.18 تطلع

7 DTNN → 4.1 0.31 4 0.35 الشمس

8 IN → 0.36 0.21 0.1 0.37 من

9 DTNN → 5.1 0.12 3.8 0.05 الشرق

10 VP 0.03

0.21

 11 VBP 0.09

0.1

 12 NP 0.02

0.05

 13 PP 0.04

0.09

 14 DTNN 0.02

0.06

 15 IN 0.36

0.41

 0.04 تطلع 16

0.15

 0.06 الشمس 17

0.18

 0.1 من 18

0.2

 0.01 الشرق 19

0.05

55

Also the log-likelihood for terminals and author a1 will be:

The one variation in computing the log-likelihood for PCFG rules is

incorporating the X
2
 score for these rules, as described by Equation

4.10, so that the log-likelihood for non-terminal rules is:

And so for terminal rules, the log-likelihood is:

So that the final log-likelihood (Equation 4.11) for author a1, is the sum

of all previous values, and will be:

56

Following the same computations for author a2, we will get the

following result:

So the final log-likelihood for author a2, will be:

According to Equation 4.13 the test document x will be assigned the

author that has the maximum value for the final log-likelihood, which

in our example is author a1.

4.5 Computing Optimum Weights

As the classifier assigns author to a test document based in Equation

4.12, we attend to find the optimum values of the weights, so that the

classifier’s accuracy is maximized as possible, such a problem is a

traditional search problem in which a search algorithm tries to find the

best solution among many candidate solutions. There are many

machine learning algorithms can be used to solve such a problem, one

is the Genetic Algorithm described in Section 3.4. In Genetic algorithm

each hypothesis is represented by chromosome, and the algorithm tries

to find the best solution, based on a statistical function, which is used to

evaluate hypotheses.

In the proposed classifier we want to find the best weights that can be

used so that the classifier is effective as much as possible. Using

Genetic algorithm each chromosome represents a candidate solution to

57

the problem of finding best weights in Equation 4.12, for example a

chromosome with values (0.2 , 0.3 , 0.1 , 0.4 , 0.0) reflects suggested

values for the different weights, where 0.2 is the value of , 0.3 is

the value of , 0.1 is the value of , 0.4 is the value of , and 0 is

the value of , the weights all sum to 1, this is a sample of a candidate

solution for weights, the algorithm evaluates each candidate solution, to

find the best one. The evaluation function is known as fitness function,

and in our problem we want to evaluate weights values for the log-

likelihood function, thus the fitness function of each chromosome is

defined as the log-likelihood , the algorithm will continue to

generate candidate chromosomes according to the fitness function

value, until reaches a candidate solution that maximize fitness function.

Such a function is considered a simple function to state the efficiency

of the classifier, and can not guide Genetic algorithm to find optimum

weights, so a more effective fitness function is a function that

maximizing the log-likelihood of the correct author, while minimizing

it for the other authors, this is implemented as follows:

 …………… (4.14)

Where is the i
th

 document in a separate data set, used only by the

Genetic algorithm, this data set called Held-out data set and only used

to estimate the fitness function, and is the j
th

 author that we want to

find optimum weights for his corresponding log-likelihood.

Equation 4.14 find the fitness function of one sample in Held-out data

set, and since we have many samples in this set, a final fitness function

is defined as the average function over all samples in the Held-out data

58

set, so given a Held-out data that contains m documents for author a,

then the final fitness function for author a is defined as:

 …………… (4.15)

59

Chapter 5

EXPERIMENTATION AND RESULTS

5.1 Dataset

A known source for authors’ documents can be found in newspapers’

websites, they contain many articles for different authors. We use

articles from Felesteen newspaper website [35], by choosing 9 different

authors, and collecting 30 Arabic articles per author. The average size

of articles per word is about 700. Table 5.1 views authors and the

average size of articles for each author.

The dataset is divided in two sets, the first which consists of 20

documents for each author, will be used in the training and testing

phase in order to train authors’ language models, and testing the

accuracy of the classifier, based on the Leave-One-Out method

(Section 3.5), the second data set consists of the remaining 10

documents for each author, it is called the Held-out data set and will be

used by Genetic Algorithm to find the optimum weights for the

different features, to get high accuracy in the classification phase.

5.2 System Environment

We implement the system using special software and hardware, the

software is implemented using Java programming language, and with

the help of some packages that provide the parsing functionality, and

Genetic algorithm, the following two sections describes the details of

parsing package, Genetic algorithm package, and the final section

describes the hardware used to implement the proposed algorithm.

60

Table 5.1: Authors’ names, and documents averaged size, that used to form

training and testing data set, plus the Held-out data set

Author

No.

Author Name

Arabic

Author Name

English

Average Article

Size

(per word)

 Mahmoud Abd Elrahim 833 محمود عبد الرحيم 1

 Khaled Mahmoud 641 خالد محمود 2

 Alaa Remawi 664 علاء الريماوي 3

 Mustafa Ledawi 860 مصطفى اللداوي 4

 Jamal Abu Reda 607 جمال أبو ريدة 5

 Khaled Khaldey 673 خالد الخالدي 6

 Esam Edwan 577 عصام عدوان 7

 Mohammad Madhown 835 محمد المدهون 8

 Adnan Abu Amer 613 عدنان أبو عامر 9

Average Size 700.33

5.2.1 Parser

The training phase starts by first parsing all authors’ documents, as

Figure 4.1 shows, so that we need a package that can deal with Arabic

texts and can produce the grammar for an Arabic document.

The Stanford parsing package [36] is a powerful software that is built

using Java language, the parser was proved to be efficient in parsing

Arabic texts [37], it can be used as a standalone software by passing

input to it, and capturing the output, or it can be used as a module in

any Java application, because it provides a set of Application

Programming Interface (API) that can be used in a custom Java

application. We use this API to integrate the Stanford parser in a new

application that is built for author attribution problem. The parser is

populated under the GNU license [38], and available for public in the

Stanford university website. Stanford parser package provides three

probabilistic parsers:

1. An accurate un-lexicalized probabilistic context-free grammar

(PCFG) parser.

2. Probabilistic lexical dependency parser.

61

3. A factored, lexicalized probabilistic context free grammar

parser, which does joint inference over the product of the first

two parsers

The first parser is recommended when parsing English language,

because in many cases the lexical preferences are not available or

inaccurate for many domains, thus the un-lexicalized parser will

perform as well as lexicalized parser, also using un-lexicalized parser is

faster, and requires less memory. The dependency parser can be used

alone, but this is usually not useful, because its accuracy is much lower.

The factored lexicalized parser provides a greater accuracy since it

combines the features of the other two parsers, this is done by

combining the preferences of the two parsers using A* algorithm [39],

also it is recommended for other languages such as German, Chinese,

and Arabic, so that this parser is used to parse authors’ documents.

The output of the parser can be presented in various forms, such as: (1)

Part of speech tags (POST): this will present only the part of speech tag

for each word in a sentence. (2) Dependencies: view the grammatical

relations between parts of a sentence; it is only available for English

language. (3) Phrase structure trees: this present the structure of the

parsed sentence using a tree structure, so that we can see the part of

speech tag of each structural unit of the sentence, as in Figure 3.2.

As we said the Stanford parser is a probabilistic parser, which is trained

over hand-parsed sentences, to parse new sentences. Stanford Arabic

parser is trained over Penn Arabic Treebank [40], which is corpus of

parsed sentences, provided by Penn University, it is a famous corpus

used by many researchers for training parsing algorithms and other

62

NLP applications, they provide many corpuses each for a specific

language, the parser uses the Arabic corpus. The corpus aims to provide

a large Arabic machine-readable text corpus, that annotated by humans

and computer. It provides a presentation of Arabic language structure at

different levels: starting from word level, phrase level, and sentence

level.

The process to make such a corpus consists of two phases. The first is

Part-of-Speech tagging: by tokenizing the text into lexical tokens and

assigning each token a lexical category. The second step is tree-

banking, which identifies the structures of word sequences, then

assigning categories for each non-terminal node. The first step is done

using Tim Buckwalter's lexicon and morphological analyzer [41],

which generates a candidate list of POST for each word, then human

just select the correct POS tag, the analyzer also helps by automatically

assigns some tags such as tagging numerical data, and punctuation

marks, at the end of this process XML files are produced. In next step

the data went through tree-bank annotation, to produce a representation

of language structure as we described before, a final bit process was

done manually by annotators (humans), or automatically to check for

inconsistencies between the tree-bank ant POS tagging.

The data which is used during these processes is used from the Agency

France Press (AFP) newswire [42], which is a standard Arabic corpus

includes 734 stories, that have 140,265 words, and about 168,123

tokens after segmenting clitics. The project uses human's annotators

that are native speakers of Arabic language, to understand enough

linguistics to check morphological syntactic analysis and build

syntactic structures.

63

Before using the parser we must view some limitation of it, to

recognize its features and capabilities.

(a) Tokenization:

The parser assumes that the supplied text is tokenized as in Penn

Arabic Treebank ATB. In general this set assumes a whitespace to

tokenize words, and does not split off clitics (A clitic is a linguistic

unit that is pronounced and written like an affix but it is

grammatically independent, for example “وقال”).

Also the parser considers only one character as end of sentence, the

end of sentence may be full stop or comma, and it does not support

the two for a single text, but in real documents authors use the two

marks to separate sentences, so we define the end of sentence to be

full stop, and replacing all commas to full stop in all articles before

passing them to parser.

(b) Normalization:

The parser trained on a normalized form of Arabic, so that we also

normalized our Arabic documents before parsing them, the

normalization process includes the following steps:

 Delete tatweel characters, such as (الشمـــــــس) will be (الشمس).

 Delete diacritics, for example (ُتَطْلع) will be (تطلع).

 Replace some characters: as vowels like Alef with hamza (أ)

or madda (آ) becomes simply Alef (ا), and Alef maksura (ى)

becomes Yaa (ي).

(c) POST:

The parser uses Bies tag set [40], which maps morphological

analysis from Buckwalter analyzer to subset of POS tags used in

Penn English Treebank (some with different meanings) as shown in

64

Table 5.2. Also the parser augmented the set to represent words that

have the determiner AL (الـ) cliticized to them, these extra tags start

with "DT", and appear for all parts of speech that can be preceded

by "Al", so we have DTNN, DTCD, etc.

5.2.2 Genetic Algorithm

To find the optimum weights between different parts of our enhanced

PCFG language model (XPCFG), we use Genetic algorithm package

which is a Java based package named JGAP [43] of version 1.5.0, the

package provides an API, so that we can integrate its functionalities in

our author attribution application. It is an open source package,

released under GNU license.

5.2.3 Hardware

As known parsing is an expensive task, since it needs high computer

resources, to produce the best production rule for a specific sentence,

also the main disadvantage of using Leave-One-Out method as we said

before, is the computational expensive since we will train the system 20

time, for each author.

For these tasks we use a specific machine contains 16 processing units,

each running of speed 2.6 GHz, the machine is 64bit architecture,

which makes it a powerful in computations, the total memory is 8GB,

and running 64bit-Linux operating system, the machine is able to work

24/7 of the time.

65

Table 5.2: English POST which is used as mapped tags for Arabic morphological

analysis

No. POST Description

1 JJ Adjective

2 RB Adverb

3 CC Coordinating Conjunction

4 DT Determiner/Demonstrative pronoun

5 FW Foreign Word

6 NN Common noun, Singular

7 NNS Common noun, Plural or Dual

8 NNP Proper noun, Singular

9 NNPS Proper noun, Plural or Dual

10 RP Particle

11 VBP Imperfect Verb

12 VBN Passive Verb

13 VBD Perfect Verb

14 UH Interjection

15 PRP Personal Pronoun

16 PRP$ Possessive Personal Pronoun

17 CD Cardinal Number

18 IN
Subordinating Conjunction (FUNC_WORD) or Preposition

(PREP)

19 WP Relative Pronoun

20 WRB Wh-Adverb

21 , Punctuation, token is , (PUNC)

22 . Punctuation, token is . (PUNC)

23 : Punctuation, token is : or other (PUNC)

66

5.3 Experiments

5.3.1 Parsing

The first step to proceed in our proposed algorithm is parsing

documents, the documents are texts written in Arabic language, the

parser only recognized Arabic texts with UTF-8 encoding , so we first

convert all texts to this encoding, then applying all normalization steps

described in Section 5.2.1, then the application sends the parser a

sentence per time to get the result, a special case here any sentence with

size of 250 characters or more, will be ignored since the parser failed in

parsing such long sentences.

All documents in both the training and testing data set are parsed,

which contains 20 documents for each author, and documents in the

Held-out data set which contains 10 different documents for each

author, the parser’s result for each document is stored in a separate

binary file, so that it can be used in different processes without

requiring to re-parse it, this minimizes the computations, especially

because we use the Leave-One-Out method.

5.3.2 Training

We use the Leave-One-Out method to train and test the system as

described in Section 3.5. Using Leave-One-Out in classification starts

from first document in the data set and considers this document as test

sample, and the other document as training documents, so that for

example we start from author number 1, and document number 1, an

XPCFG model is trained using 19 documents for author number 1, and

all 20 documents for other authors, this model is stored in a binary file

with the format Author1_1.pcfg, also an XPCFG language model is

67

trained using the whole documents (Author1_full.pcfg) this full-trained

language model will be used in classification, so that for each author

we produce 21 XPCFG language models, where the first one is trained

using 20 documents for a specific author, while the others trained using

19 documents for the corresponding author, by excluding a new

document each time. Each one of these language models will be stored

in a separate binary file to be used in classification easily.

In classification, the test document is passed to all authors XPCFG

models to compute the likelihood score, the document will be assigned

to author whose XPCFG model generate the highest score among the

other models, for example to test document number 5 for author

number 1, the system will pass the document to XPCFG of author 1

that excludes the 5
th

 documents (Author1_5.pcfg), and to the full-

trained XPCFG for other authors, by this the system implements the

Leave-One-Out method.

5.3.3 Computing Optimum Weights

Using the JGAP package we configure the chromosomes to contain 5

genes, each reflects a different weight in Equation 4.12, a gene will

carry fractional values, with a constraint that all genes values sum to

one. The algorithm starts with random values for genes. Also we

implement the fitness function in Equation 4.15, the algorithm

configured to start from a population of size 20 samples, the size of the

population is not fixed, so along algorithm processing it may be

increased by adding more samples, or decreased by removing some.

To estimate a fitness function of an author a, we average the fitness

function over his Held-out data set which contains 10 documents for

68

each author, the documents in Held-out data set are not used in training.

To compute such a function we need to calculate the log-likelihood

between the corresponding author’s language model, and each

document in Held-out data set, that are belongs to this author (Equation

4.14), then a final estimation is averaged over these documents for the

corresponding author as shown in Equation 4.15.

5.4 Performance Measurement

As known there are many measurements that can judge the efficiency

of a classifier, we use three different measurements, which are error

rate, accuracy, and precision [27]. First because we use Leave-One-Out

method in training and testing, it is important to compute the error of

the classifier when setting one document as a test document and the

others as training documents, the error rate is simply the proportion of

misclassified documents of the total documents for a corresponding

author, so the error rate will be always calculated by counting the

number of misclassified document for a specific author divided by the

number of author’s documents, which equals 20 documents. For

example suppose that we want to classify the 20 documents for a

specific author using Leave–One-Out method, and the system truly

classifies 17 documents, then the error rate will be 3/20 = 15%. After

error rate is computed for each author an average will be computed for

all authors, to reflect the error rate for the system, and clearly we seek

to minimize this value.

Another quantity that is used to measure the performance of a classifier

is the overall accuracy which is the degree of closeness of

measurements of a quantity to that quantity's actual value (true value)

[44], in classification problems it is the number of correctly classified

69

documents (true positive and true negative) divided by the number of

documents classified overall, it is clear that the correctly classified

documents, are the documents that belonged to an author, and classified

to that author, or the documents that belongs to other authors, and each

classified to its corresponding author. To compute the overall accuracy

we must compute the accuracy for each author, and then find the

average accuracy over all authors.

On the other hand precision is the degree to which repeated

measurements under unchanged conditions show the same results. In

classification problems it can be viewed as the number of correctly

classified documents belongs to specific author, divided by the number

of all documents classified to be belongs to that author. We will also

compute the precision for each author, and then we can obtain the

average precision for the system.

Clearly we need a maximum value for the accuracy, and precision, in

the opposite of the error rate which better to be as minimum as

possible.

5.5 Results

We have two data sets; the first of size 180 documents, and the second

(Held-out) is of size 90 documents, Figures 5.1, and 5.2 show the

relation between document size, and needed time to parse the

document, and because the parser handles a document one sentence

each time, the size of document is calculated by number of sentences.

The two figures suggest a direct proportion between the document size,

and the needed time to parse it. Although parsing is a computational

70

expensive process, the needed time did not exceeds 200 seconds, this

may returned to the powerful hardware and software used in parsing.

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

P
a

rs
in

g
 T

im
e

(s
ec

o
n

d
)

Document Size (sentence)

0

20

40

60

80

100

120

140

160

0 50 100 150 200

P
a

rs
in

g
 T

im
e

(s
ec

o
n

d
)

Document Size (sentence)

Figure 5.1: Parsing time and document size in training and testing data set.

Figure 5.2: Parsing time and document size in Held-out data set.

71

The training phase is a very computational expensive task; because it is

done by using Leave-One-Out method, so that the system is trained 180

different times, every time with different documents, also in each time

the system computes the X
2
 score for each rule, which requires

accessing all documents and counting as Equation 3.1 described, the

training phase requires too much of time (about hours) for every step of

training. Figure 5.3 tries to describe the relation of training time with

the size of training documents, the document size in the Figure is the

size of the leaved document, remember in training, the system leaves

one document in each step, and trained using the remaining documents.

The most time consuming process in training is the estimation of X
2

since the system will access all documents. Note that the training time

in Figure 5.3 do not include parsing time, since documents already be

parsed, and the result is stored in binary files.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200

T
ra

in
in

g
 T

im
e

(s
ec

o
n

d
)

Document Size (sentence)

Figure 5.3: Training time and document size, where document size is the size of

the leaved document in training

72

Using Leave-One-Out method we will have 180 documents (9×20) to

be classified, and we compute three different measurements to describe

system’s efficiency. Since PCFG was tested in English language [14]

we retest PCFG performance over our data set which is Arabic

documents, to compare the results between the PCFG and the enhanced

XPCFG language model. Table 5.3 shows error rate, precisian, and

accuracy for each author using the Leave-One-Out method over the

PCFG language model proposed in [14], it shows that the system

achieves best accuracy in author #9 (97.22%), best precision in author

#3,5,6 (100%), and best minimum error in author #1 (00.0%), it seems

as a good result for a classifier but the final accuracy, precision, error

rate for the system is 92.22%, 79.68%, 34.33% respectively, which

means that PCFG model contains features that can be used in author

attribution problem, but it cannot success for all authors, so that it

cannot capture different writing styles for authors, this result supports

our hypothesis that the PCFG model contains richness of features. In

the other hand we can see in Table 5.4, which describes the result for

XPCFG model, that the system achieves best accuracy for author #6,7

(98.33%), best precision 100%, and best error rate 00.0%, the result is

almost similar to PCFG model, but when looking to the overall

performance of the system we can see that it achieves a 95.74%

accuracy, 86.88% precision, and 20.5% error rate, which is better than

the previous model, this can proves that adding more lexical, and

syntactic information to the traditional PCFG language model can

increase its efficiency in author attribution problem. Comparing with

PCFG’s result, our new model achieves a better result in all

measurements (error rate, precision, and accuracy), the enhancement is

about 3.5%, 7.19%, and 13.88 in accuracy, precision, error rate

73

respectively. The highest enhancement is done in error rate which is the

percent of misclassified samples, so the number of truly classified

samples is increased, which satisfies the users of author attribution

system.

Table 5.3: PCFG Model Results

Author Accuracy Precision Error Rate

1 0.911111 0.555556 0.0

2 0.922222 0.666667 0.4

3 0.911111 1.0 0.8

4 0.966667 0.818182 0.1

5 0.944444 1.0 0.5

6 0.966667 1.0 0.3

7 0.916667 0.857143 0.7

8 0.788889 0.333333 0.1

9 0.972222 0.941176 0.2

Average 0.922222 0.796895 0.344444

Table 5.4: XPCFG Model Results

Author Accuracy Precision Error Rate

1 0.916667 0.571429 0.0

2 0.916667 1.0 0.85

3 0.983333 1.0 0.15

4 0.983333 0.869565 0.0

5 0.944444 0.666667 0.0

6 0.983333 0.869565 0.0

7 0.938889 1.0 0.55

8 0.966667 0.9375 0.25

9 0.983333 0.904762 0.05

Average 0.957407 0.868832 0.205556

Remember that the XPCFG contains weights for each feature, as we

described in Equation 4.12, the previous results (Table 5.4), is done

using equal weights. To find the best weights between the different

parts of XPCFG model we use the Genetic algorithm, which uses the

74

Held-out data set to find these weights, since the fitness function

described in Equation 4.15 is estimated using the error rate, the Genetic

algorithm will not run for authors that achieve 00.0% error rate in Table

5.4, since the system already achieves the minimum error for those

authors.

The Genetic algorithm computes the optimum weights as shown in

Table 5.5. After weights are calculated, we can use these weights to

re-classify authors’ documents (also by using Leave-One-Out method),

and re-estimate the accuracy, precision, and error rate for each author,

this is shown in Table 5.6 where there are no changes in result for

authors that already reaches minimum error rate, the result shows that

there is an enhancement when using weights generated from Genetic

algorithm, for example author #2 achieves accuracy of 95.5% which is

an enhanced value of the XPCFG result for that author (Table 5.4).

Looking to the overall results, the accuracy of the classifier reaches

96.5% this is an enhancement of the XPCFG’s result shown in Table

5.4, the percentage of the enhancement in accuracy is 3.389%, at the

level of the precision the system achieves 86.88% of overall precision,

which also an enhancement by 7.78% of the previous model, also the

averaged error rate achieves a good result of 12.77%.

A comparison between authors’ precision, accuracy, and error rate is

shown in Figure 5.4, 5.5, and 5.6 respectively. These figures show that

the PCFG model achieves an acceptable result for some authors,

however it can not gain good overall results, so the model can capture

writing styles for some of the authors, while the XPCFG model gains

an acceptable overall performance, since it is augmented with more

features that successfully capture authors’ styles, and since the writing

75

style is different between authors, setting an efficient weights for

features in XPCFG model, can achieves a more enhanced result.

Comparing the results obtained by the XPCFG language model, and the

results of machine learning based methods, we can note that the

XPCFG language model achieves a good result over the methods based

on machine learning approach, the XPCFG achieves high result over

methods proposed in [1,10,15,16,17], this also support our second

hypothesis which suggests that language models contain richness of

features that can be used in author attribution problem, and can

determine authors styles.

Table 5.5: XPCFG weights for authors,

calculated by Genetic Algorithm

Author

2 0.00 0.00 0.02 0.96 0.02

3 0.00 0.91 0.04 0.01 0.04

7 0.02 0.87 0.03 0.06 0.02

9 0.00 1.00 0.00 0.00 0.00

Table 5.6: XPCFG Model Result using different

weights

Author Accuracy Precision Error Rate

1 0.916667 0.571429 0.0

2 0.955556 1.0 0.4

3 0.988889 1.0 0.1

4 0.983333 0.869565 0.0

5 0.944444 0.666667 0.0

6 0.983333 0.869565 0.0

7 0.961111 1.0 0.35

8 0.966667 0.9375 0.25

9 0.983333 0.904762 0.05

Average 0.964815 0.868832 0.127778

76

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

P
re

ci
si

o
n

Author

PCFG

XPCFG

XPCFG+GA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

A
cc

u
ra

cy

Author

PCFG

XPCFG

XPCFG+GA

Figure 5.4: Precision for each author, using the three models; PCFG, XPCFG,

and XPCFG with weights.

Figure 5.5: Accuracy for each author, using the three models; PCFG, XPCFG,

and XPCFG with weights.

77

Returning to Table 5.5 if we ignore the very small values, you can note

that for any of the authors the whole weight goes to a specific feature.

For example for author #2 all the weight going to non-terminals log-

likelihood, this means that for author #2 the non-terminals can

sufficiently used to classify documents. From that we can state that

PCFG language model alone can not capture the style for all authors,

since some authors may be discriminated by measuring their usage of

non-terminals (author #2), or by measuring only the PCFG non-

terminal rules (author #3, 7, 9).

Also we can note that terminals, terminals PCFG rules, and punctuation

marks are less descriptive features in author attribution problem, even

this they participated in classification for the authors (Table 5.4). They

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

E
rr

o
r

R
a

te

Author

PCFG

XPCFG

XPCFG+GA

Figure 5.6: Error rate for each author, using the three models; PCFG, XPCFG,

and XPCFG with weights, some authors do not have error rate for some of their

models

78

are the less discriminate features, because terminals are a topic

dependent features, depend on the topic of the written text, this applies

also to terminal PCFG rules. The punctuation marks participate in

classification of some authors, but for the authors in Table 5.5, the

punctuation marks failed to gain high weight, this may returned to two

reasons, the first that authors use punctuation marks with almost same

richness in text, or punctuation marks in Arabic texts can not

sufficiently discriminating the author of the text.

79

Chapter 6

CONCLUSIONS

6.1 Summary and Concluding Remarks

We proposed a new method to solve author attribution problem, this

method depends on the language model theory, since the traditional

methods used in author attribution problem use a set of features and a

machine learning classifier to solve the problem of identifying the

author of an unknown text.

The proposed system enhances the PCFG language model, by first

adding some lexical, and syntactic features to the model, all these

features are extended from the PCFG model, which contains rich

information that can be used in author attribution problem, the

proposed language model (XPCFG), first separates the production rules

of PCFG, in two sets the first is the set contains the non-terminal rules,

while the other contains terminal rules, also the XPCFG model adds

lexical, and syntactic information by capturing the non-terminals,

terminals, and punctuation marks. This information is described by

their probabilities in the corpus that are used by the language model in

training phase, so that XPCFG contains probabilities for non-terminals,

terminals, and punctuation marks, plus the probabilities of the

production rules inherited from the PCFG model, adding such

information can reflect the writing style of authors, the rules can

describe the structure of sentences used by an author, while non-

terminals can capture the POS tags that are used by authors, for

example a specific author has high probability for using verbs, while

80

the other has low probability for nouns, the terminals describe the

richness of words used by the author, and punctuation marks capture

the format style of the author.

Another enhancement done by XPCFG model is that it assigns weights

for PCFG rules, these weights describe the importance of each

individual rule; it is calculated using chi-square score, so that a rule that

appears in few authors will gain high score, while other rule that

appears in all authors will gain a very small weight. The purpose of

adding rules weights to XPCFG is to enable the language model to

automatically find the most discriminative rules among different

author.

The system is trained using a set of documents for each author, and

produces an XPCFG language model for each author. In the

classification phase an unknown document is assigned to each author’s

language model, to find the best model that most likely can produce the

unknown document, this is done by estimating the log-likelihood

between the test document and each author’s XPCFG. Using log-

likelihood because that the XPCFG cantinas only probabilities that

describe its content.

The log-likelihood is computed for each part of XPCFG (rules, non-

terminals, terminals, and punctuation marks), and a final log-likelihood

between test document and XPCFG is estimated by summing the log-

likelihood for its parts. The last enhancement done by XPCFG is that

the summing of its parts is governed by weights, which describe the

importance of each part in classification of an unknown text.

81

The proposed system is tested over Arabic texts, and we use three

different metrics to measure the efficiency of the system, the accuracy,

precision, and error rate. The system achieves 95.7%, 86.8%, and 20%

of accuracy, precision, and error rate respectively; with this result the

XPCFG model exceeds the traditional PCFG language model in author

attribution problem.

The weights of the XPCFG is estimated using Genetic algorithm, which

searches for the best solution for the weights, so that optimizing a

predefined function, and using these weights calculated by Genetic

algorithm, the system reaches a more satisfaction results, by achieving

accuracy of 96.4%, error rate of 12.7%, which is also an enhancement

in author attribution problem.

The estimation of weights done by Genetic algorithm exploits

important facts, for some authors the Genetic algorithm finds that the

best classification efficiency achieved when using only non-terminals

probabilities, or non-terminal PCFG rules, from this we can conclude

that PCFG rules (which capture the structure of sentences) can not

successfully capture the writing style for all authors, there are some

authors where their writing style can not be captured by the structure of

sentences that used in their written texts.

So that the extension of the PCFG model to produce XPCFG model can

sufficiently capture different writing styles for different authors,

especially if the weights between the parts of XPCFG model was set

properly.

82

6.2 Recommendations and Future Work

The proposed system depends on the rules generated by the parser, so

that the more efficient parser leads to more efficient system, as we

described later the parser has some limitation, such that the parser can

not split clitics, so that parsing of some sentences is not accurate, so if

we can split clitics before parsing texts, we can obtain a more accurate

rules, and we can discover the efficiency of clitics in author attribution

problem in Arabic texts.

Also the parser for each author is trained over the same data set as

described in Section 5.2.1, it is more efficient to train a separate parser

for each author, so that each parser is trained using documents for its

corresponding author, this may increase the accuracy of the parsing

process so that the parser generate more reliable rules related to a

specific author, not to general corpus.

Remember that we have calculated the chi-square score for each rule

generated from PCFG model, to capture the importance for such rules.

We can apply this approach to terminals, non-terminals, and

punctuation marks, so the system can automatically find the most

important set of terminals, non-terminals, and punctuation marks,

especially after that the terminals, and punctuation marks failed to

obtain high weights for some authors, so it is good to automatically find

the terminals (words) that can capture author’ style, since as we said

before that terminals is a topic dependent feature.

The system achieves an acceptable result over a small set of candidate

authors, we may increase the number of authors in the system, with

their documents, to measure the stability of the classifier using more

samples, and classes (authors).

83

When estimating the weights using Genetic algorithm, the results

showed that the punctuation marks do not strongly participate in

classification, so we may retest the proposed system by setting the

weight for punctuation marks to zero to test their importance in author

attribution problem, since they participate in the same weights for

authors not in Table 5.5.

The XPCFG language model is language-free model, generating such a

model does not depend on a specific language (expect the parser), so

we may test it over other languages (especially English language), to

measure its ability to classify documents written using different

languages.

84

REFERENCES

[1] C. Chaski, “Who’s At The Keyboard? Authorship Attribution in

Digital Evidence Investigations”, International Journal of Digital

Evidence, vol. 4, no. 1, 2005.

[2] N. Glance, M. Hurst, K. Nigam, M. Siegler, R. Stockton, and T.

Tomokiyo, “Deriving marketing intelligence from online discussion”,

in ACM SIGKDD international conference on knowledge discovery in

data mining, Chicago, USA, August 2005, pp. 419–428.

[3] J. Oberlander, and S. Nowson, “Whose thumb is it anyway?

Classifying author personality from weblog text”, in COLING/ACL

2006 Main Conference Poster Sessions, Sydney, Australia, 2006, pp.

627–634.

[4] G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas,

“Effective identification of source code authors using byte-level

information”, in International Conference on Software Engineering,

New York, USA, 2006, pp. 893-896.

[5] S. Burrows, A. Uitdenbogerd, and A. Turpin, “Application of

Information Retrieval Techniques for Source Code Authorship

Attribution”, in International Conference on Database Systems for

Advanced Applications, Berlin, 2009, pp. 699 – 713.

[6] E. Stamatatos, “A Survey of Modern Authorship Attribution

Methods”, Journal of the American Society for Information Science

and Technology, vol. 60, no. 3, 2009.

[7] S. Argamon, C. Whitelaw, P. Chase, S. Hota, N. Garg, and S.

Levitan, “Stylistic text classification using functional lexical features”,

Journal of the American Society for Information Science and

Technology, vol. 58, pp. 802-822, 2007.

85

[8] F. Türkoğlu, B. Diri, and M. Amasyal, “Author Attribution of

Turkish Texts by Feature Mining”, in Intelligent computing

international conference on Advanced intelligent computing theories

and applications, Heidelberg, Berlin, 2007, pp. 1086-1093.

[9] M. Koppel, and J. Schler, “Exploiting stylistic idiosyncrasies for

authorship attribution”, In IJCAI Workshop on Computational

Approaches to Style Analysis and Synthesis, Acapulco, Mexico , 2003,

pp. 69-72.

[10] F. Peng, D. Schuurmans, V. Keselj, and S. Wang, "Language

Independent Authorship Attribution using Character Level Language

Models", in Tenth conference on European chapter of the Association

for Computational Linguistics, USA, 2003, pp. 267-274.

[11] R. Baayen, H. Halteren, and F. Tweedie, “Outside the cave of

shadows: Using syntactic annotation to enhance authorship attribution”,

Literary and Linguistic Computing, vol. 11, pp. 121–131, 1996.

[12] P. McCarthy, G. Lewis, D. Dufty, and D. McNamara, “Analyzing

writing styles with coh-metrix”, in Florida Artificial Intelligence

Research Society International Conference, 2006, pp. 764-769.

[13] N. Indurkhya, and F. Damerau, “Syntactic Parsing,” in Handbook

of Natural Language Processing, 2
nd

 ed., USA, 2010.

[14] S. Raghavan, A. Kovashka, and R. Mooney, “Authorship

Attribution Using Probabilistic Context-Free Grammars”, in ACL

Conference Short Papers, Sweden, 2010, pp. 38-42.

[15] K. Luyckx, and W. Daelemans, “Shallow Text Analysis and

Machine Learning for Authorship Attribution”, in Computational

Linguistics, Netherlands, 2005, pp. 149-160.

[16] N. Tsimboukakis, and G. Tambouratzis, "Neural Networks for

Author Attribution", in Fuzzy Systems Conference, London, 2007.

86

[17] J. Diederich, J. Kindermann, E. Leopold, and G. Paass,

"Authorship Attribution with Support Vector Machines", Applied

Intelligence Journal, vol. 19, no. 1-2, 2003.

[18] K. Luyckx, “Authorship Attribution of E-mail as a Multi-Class

Task”, in CLEF 2011 Labs and Workshop, Netherlands, 2011.

[19] V. Keselj, F. Peng, N. Cercone, and C. Thomay, “N-Gram-Based

Author Profiles for Authorship Attribution”, in Pacific Association for

Computational Linguistics, Canada, August 2003, pp. 255-264.

[20] S. Ouamour, and H. Sayoud, “Authorship Attribution of Ancient

Texts Written by Ten Arabic Travelers Using a SMO-SVM Classifier”,

in International Conference on Communications and Information

Technology, Hammamet, June 2012, pp. 44-47.

[21] K. Shaker, and D. Corne, “Authorship Attribution in Arabic using

a Hybrid of Evolutionary Search and Linear Discriminant Analysis”, in

Computational Intelligence, Colchester, September 2010, pp. 1-6.

[22] A. Abbasi, and H. Chen, “Applying Authorship Analysis to

Extremist-Group Web Forum Messages”, Intelligent Systems IEEE,

vol. 20, no. 5, September, 2005.

[23] J. Li, R. Zheng, and H. Chen, “From Fingerprint to Writeprint”,

Communications Of The Acm, vol. 49, no. 4, April, 2006.

[24] T. Mitchell, “Genetic Algorithms”, in Machine Learning, 1
st
 ed.,

USA, 1997.

[25] K. Luyckx, and W. Daelemans, “Authorship Attribution and

Verification with Many Authors and Limited Data”, in International

Conference on Computational Linguistics, Manchester, August 2008,

pp. 1086–1093.

87

[26] M. Koppel, J. Schler, and S. Argamon, “Authorship attribution in

the wild”, Language Resources and Evaluation, vol. 45, no. 1, March,

2011.

[27] C. Manning, P. Raghavan, and H. Schütze, “Scoring, term

weighting and the vector space model,” in An Introduction to

Information Retrieval, 1
st
 ed., England, 2009.

[28] Y. Yang, J. Pedersen, “A comparative study on feature selection in

text categorization”, in Machine Learning-International Workshop,

USA, 1997, pp. 412-420.

[29] S. Theodoridis, and K. Koutroumbas, “Supervised Learning: The

Epilogue,” in Pattern Recognition, 4
th

 ed., Academic Press, 2009.

[30] C. Chaski, "Empirical Evaluations of Language-Based Author

Identification Techniques", International Journal of Speech Language

and the Law, vol. 8, no. 1, 2001.

[31] Parsing [online], Available: http://en.wikipedia.org/wiki/Parsing

[32] S. Argamon, S. Levitan, “Measuring the usefulness of function

words for authorship Attribution”, in Conference of the Association for

Computers and the Humanities and the Association for Literary and

Linguistic Computing, 2005.

[33] Y. Zhao, and J. Zobel, “Effective and Scalable Authorship

Attribution Using Function Words”, in Second Asia conference on Asia

Information Retrieval Technology, Heidelberg, Berlin, 2005, pp. 174-

189.

[34] R. Duda, P. Hart, and D. Strok, “Maximum likelihood and

Bayesian estimation”, Pattern Classification, 2
nd

 ed., Wiley

Publication, 2001.

88

[35] Felesteen newspaper [online], Available: http://www.felesteen.ps.

[36] The Stanford Parser. (2012, November). [Online]. Available:

http://nlp.stanford.edu/software/lex-parser.shtml.

[37] S. Green, and C. Manning, “Better Arabic parsing: baselines,

evaluations, and analysis” in International Conference on

Computational Linguistics, USA, 2010.

[38] GNUGP License. (2007, June 29) [Online]. Available:

http://www.gnu.org/licenses/gpl.

[39] S. Theodridis, and K. Koutroumbas, “Template Matching”, in

Pattern Recognition, 4th ed., USA, 2009.

[40] Penn Treebank Project. (1999, February 2). [Online]. Available:

www.cis.upenn.edu/~treebank/

[41] T. Buckwalter, “Buckwalter Arabic Morphological Analyzer

Version 1.0”, Linguistic Data Consortium, catalog number

LDC2002L49, ISBN 1-58563-257-0, 2002.

[42] Agency France Press. (2012, November). [Online]. Available:

http://www.afp.com

[43] Java Genetic Algorithms Package. (2012, November). [Online].

Available: http://jgap.sourceforge.net

[44] Accuracy and Precision. (2012, September 3). [Online]. Available:

http://en.wikipedia.org/wiki/Accuracy_and_precision

	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	LIST OF FIGURES
	LIST OF TABLES
	تحديد هوية المؤلف من النصوص العربية
	محمد فؤاد الطيبي
	ملخص
	Author Attribution from Arabic Texts
	Mohammad F. Eltibi
	ABSTRACT
	Chapter 1
	INTRODUCTION
	1.1 Authorship Attribution Definition
	1.2 Applications of Authorship Attribution
	1.3 Author Attribution Categories
	1.4 Approach
	1.4.1 Features
	1.4.2 Attribution

	1.5 Research Overview
	1.5.1 Objective
	1.5.2 Methodology
	1.5.3 Contribution
	1.5.4 Organization

	Chapter 2
	RELATED WORKS
	2.1 Machine Learning-Based Methods
	2.2 Features Selection Methods
	2.3 Other Methods

	Chapter 3
	THEORETICAL BACKGROUND
	3.1 Probabilistic Context Free Grammar
	3.2 Chi-Square Feature Selection
	3.3 Genetic Algorithm
	3.4 Leave-One-Out Method

	Chapter 4
	PROPOSED METHOD
	4.1 Overview
	4.2 Parsing
	4.3 Training
	4.3.1 PCFG Rules Probabilities
	4.3.2 Non-terminals Probabilities
	4.3.3 Terminals Probabilities
	4.3.4 Punctuation Marks Probabilities
	4.3.5 Chi-Square Score (X2)

	4.4 Classification
	4.5 Computing Optimum Weights

	Chapter 5
	EXPERIMENTATION AND RESULTS
	5.1 Dataset
	5.2 System Environment
	5.2.1 Parser
	5.2.2 Genetic Algorithm
	5.2.3 Hardware

	5.3 Experiments
	5.3.1 Parsing
	5.3.2 Training
	5.3.3 Computing Optimum Weights

	5.4 Performance Measurement
	5.5 Results

	Chapter 6
	CONCLUSIONS
	6.1 Summary and Concluding Remarks
	6.2 Recommendations and Future Work

	REFERENCES

