• العربية
    • English
  • English 
    • العربية
    • English
  • Login
Home
Publisher PoliciesTerms of InterestHelp Videos
Submit Thesis
IntroductionIUGSpace Policies
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Faculty of Information Technology
  • PhD and MSc Theses- Faculty of Information Technology
  • View Item
  •   Home
  • Faculty of Information Technology
  • PhD and MSc Theses- Faculty of Information Technology
  • View Item

Please use this identifier to cite or link to this item:

http://hdl.handle.net/20.500.12358/20185
TitleEfficient Arabic Word Outline by Combining Active Contour Model and Corner Detection
Title in Arabicتمثيل الإطار الخارجي للكلمات العربية بكفاءة من خلال الدمج بين نموذج الكنتور النشط وتحديد ونقاط الزوايا
Abstract

Graphical curves and surfaces fitting are hot areas of research studies and application, such as artistic applications, analysis applications and encoding purposes. Outline capture of digital word images is important in most of the desktop publishing systems. The shapes of the characters are stored in the computer memory in terms of their outlines, and the outlines are expressed as Bezier curves. Existing methods for Arabic font outline description suffer from low fitting accuracy and efficiency. In our research, we developed a new method for outlining shapes using Bezier curves with minimal set of curve points. A distinguishing characteristic of our method is that it combines the active contour method (snake) with corner detection to achieve an initial set of points that is as close to the shape's boundaries as possible. The method links these points (snake + corner) into a compound Bezier curve, and iteratively improves the fitting of the curve over the actual boundaries of the shape. We implemented and tested our method using MATLAB. Test cases included various levels of shape complexity varying from simple, moderate, and high complexity depending on factors, such as: boundary concavities, number of corners. Results show that our method achieved average 86% of accuracy when measured relative to true shape boundary. When compared to other similar methods (Masood & Sarfraz, 2009; Sarfraz & Khan, 2002; Ferdous A Sohel, Karmakar, Dooley, & Bennamoun, 2010), our method performed comparatively well. Keywords: Bezier curves, shape descriptor, curvature, corner points, control points, Active Contour Model.

Authors
Bahnasawi, Amjad Yousef El -
Supervisors
Alattar, Ashraf
Typeرسالة ماجستير
Date2017
LanguageEnglish
Publisherالجامعة الإسلامية - غزة
Citation
License
Collections
  • PhD and MSc Theses- Faculty of Information Technology [124]
Files in this item
file_1.pdf2.508Mb
Thumbnail

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback
 

 

Browse

All of IUGSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsSupervisors

My Account

LoginRegister

Statistics

View Usage Statistics

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback