• العربية
    • English
  • English 
    • العربية
    • English
  • Login
Home
Publisher PoliciesTerms of InterestHelp Videos
Submit Thesis
IntroductionIUGSpace Policies
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Faculty of Information Technology
  • PhD and MSc Theses- Faculty of Information Technology
  • View Item
  •   Home
  • Faculty of Information Technology
  • PhD and MSc Theses- Faculty of Information Technology
  • View Item

Please use this identifier to cite or link to this item:

http://hdl.handle.net/20.500.12358/20081
TitleSpyware Detection Using Data Mining for Windows Portable Executable Files
Untitled
Abstract

Malware represents a significant problem that threatens the security of computer systems. Spyware is one of the recent types of malware that represents a serious threat to confidentiality. The traditional approaches using signature-based to detect spyware programs fails in detecting new and unknown spyware. Many of the malware detection techniques which work well in detecting malware are not investigated in terms of spyware detection. In this research, we investigate the spyware detection by using data mining techniques based on mining Application Programming Interface (API) calls. 2084 spyware and 1065 benign windows Portable Executable (PE) file samples were collected from the Internet in order to create binary data set. API call statically extracted from binary file, then generate a set of features and features selection was performed, these features are then used to train a classifier. We evaluated a variety of classification algorithms, including Random forest, Naïve Bayes (NB), K−Nearest Neighbor (kNN), JRip, J48 decision trees, and support vector machines (SVMs). The accuracy and the area under ROC curve are used for the evaluation of classifier performance. The results show that we achieved an overall accuracy of 98.09% with an area under the ROC curve of 0.995.

Authors
Shaban, Fadel Omar
Supervisors
Barhoom, Tawfiq Barhoom
Typeرسالة ماجستير
Date2013
LanguageEnglish
Publisherالجامعة الإسلامية - غزة
Citation
License
Collections
  • PhD and MSc Theses- Faculty of Information Technology [124]
Files in this item
file_1.pdf2.343Mb
Thumbnail

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback
 

 

Browse

All of IUGSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsSupervisors

My Account

LoginRegister

Statistics

View Usage Statistics

The institutional repository of the Islamic University of Gaza was established as part of the ROMOR project that has been co-funded with support from the European Commission under the ERASMUS + European programme. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Contact Us | Send Feedback